786 research outputs found

    Metal-Insulator Transition in 2D: Experimental Test of the Two-Parameter Scaling

    Full text link
    We report a detailed scaling analysis of resistivity \rho(T,n) measured for several high-mobility 2D electron systems in the vicinity of the 2D metal-insulator transition. We analyzed the data using the two parameter scaling approach and general scaling ideas. This enables us to determine the critical electron density, two critical indices, and temperature dependence for the separatrix in the self-consistent manner. In addition, we reconstruct the empirical scaling function describing a two-parameter surface which fits well the \rho(T,n) data.Comment: 4 pages, 4 figures, 1 tabl

    Renormalization of hole-hole interaction at decreasing Drude conductivity

    Full text link
    The diffusion contribution of the hole-hole interaction to the conductivity is analyzed in gated GaAs/Inx_xGa1x_{1-x}As/GaAs heterostructures. We show that the change of the interaction correction to the conductivity with the decreasing Drude conductivity results both from the compensation of the singlet and triplet channels and from the arising prefactor αi<1\alpha_i<1 in the conventional expression for the interaction correction.Comment: 6 pages, 5 figure

    Electronic structure, magnetic and optical properties of intermetallic compounds R2Fe17 (R=Pr,Gd)

    Full text link
    In this paper we report comprehensive experimental and theoretical investigation of magnetic and electronic properties of the intermetallic compounds Pr2Fe17 and Gd2Fe17. For the first time electronic structure of these two systems was probed by optical measurements in the spectral range of 0.22-15 micrometers. On top of that charge carriers parameters (plasma frequency and relaxation frequency) and optical conductivity s(w) were determined. Self-consistent spin-resolved bandstructure calculations within the conventional LSDA+U method were performed. Theoretical interpetation of the experimental s(w) dispersions indicates transitions between 3d and 4p states of Fe ions to be the biggest ones. Qualitatively the line shape of the theoretical optical conductivity coincides well with our experimental data. Calculated by LSDA+U method magnetic moments per formula unit are found to be in good agreement with observed experimental values of saturation magnetization.Comment: 16 pages, 5 figures, 1 tabl

    Detection of mechanical resonance of a single-electron transistor by direct current

    Get PDF
    We have suspended an Al based single-electron transistor whose island can resonate freely between the source and drain leads forming the clamps. In addition to the regular side gate, a bottom gate with a larger capacitance to the SET island is placed underneath to increase the SET coupling to mechanical motion. The device can be considered as a doubly clamped Al beam that can transduce mechanical vibrations into variations of the SET current. Our simulations based on the orthodox model, with the SET parameters estimated from the experiment, reproduce the observed transport characteristics in detail.Comment: 4 pages, 3 figure

    Superconducting properties of sulfur-doped iron selenide

    Full text link
    The recent discovery of high-temperature superconductivity in single-layer iron selenide has generated significant experimental interest for optimizing the superconducting properties of iron-based superconductors through the lattice modification. For simulating the similar effect by changing the chemical composition due to S doping, we investigate the superconducting properties of high-quality single crystals of FeSe1x_{1-x}Sx_{x} (xx=0, 0.04, 0.09, and 0.11) using magnetization, resistivity, the London penetration depth, and low temperature specific heat measurements. We show that the introduction of S to FeSe enhances the superconducting transition temperature TcT_{c}, anisotropy, upper critical field Hc2H_{c2}, and critical current density JcJ_{c}. The upper critical field Hc2(T)H_{c2}(T) and its anisotropy are strongly temperature dependent, indicating a multiband superconductivity in this system. Through the measurements and analysis of the London penetration depth λab(T)\lambda _{ab}(T) and specific heat, we show clear evidence for strong coupling two-gap ss-wave superconductivity. The temperature-dependence of λab(T)\lambda _{ab}(T) calculated from the lower critical field and electronic specific heat can be well described by using a two-band model with ss-wave-like gaps. We find that a dd-wave and single-gap BCS theory under the weak-coupling approach can not describe our experiments. The change of specific heat induced by the magnetic field can be understood only in terms of multiband superconductivity.Comment: 13 pages, 7 figure
    corecore