15 research outputs found
Erk2 but not Erk1 regulates crosstalk between Met and EGFR in squamous cell carcinoma cell lines
Background: Squamous cell carcinoma (SCC) is the most common type of tongue and larynx cancer and a common type of lung cancer. In this study, we attempted to specifically evaluate the signaling pathway underlying HGF/Met induced EGFR ligand release in SSCs. The Met proto-oncogene encodes for a tyrosine kinase receptor which is often hyperactivated in human cancers. Met activation correlates with poor patient outcome. Several studies revealed a role of Met in receptor-crosstalk inducing either activation of other receptors, or inducing their resistance to targeted cancer treatments. In an epithelial tumor cell line screen we recently showed that the Met ligand HGF blocks the EGFR tyrosine kinase and at the same time activates transcriptional upregulation and accumulation in the supernatant of the EGFR ligand amphiregulin (Oncogene 32: 3846-56, 2013). In the present work we describe the pathway responsible for the amphiregulin induction. Findings: Amphiregulin is transcriptionally upregulated and is released into the supernatant. We show that Erk2 but not Erk1 mediates amphiregulin upregulation upon treatment with monocyte derived HGF. A siRNA knockdown of Erk2 completely abolishes amphiregulin release in squamous cell carcinomas. Conclusions: These results identify Erk2 as the key downstream signal transducer between Met activation and EGFR ligand upregulation in squamous cell carcinoma cell lines derived from tongue, larynx and lung
PTK7 as a potential prognostic and predictive marker of response to adjuvant chemotherapy in breast cancer patients, and resistance to anthracycline drugs
Biomarkers predicting resistance to particular chemotherapy regimens could play a key role in optimally individualized treatment concepts. PTK7 (protein tyrosine kinase 7) belongs to the receptor tyrosine kinase family involved in several physiological, but also malignant, cell behaviors. Recent studies in acute myeloid leukemia have associated PTK7 expression with resistance to anthracycline therapy. PTK7 mRNA expression in primary tumor tissue (PTT) and corresponding lymph node tissue (LNT) were retrospectively measured in 117 patients with early breast cancer;PTK7 expression was available in 103 PTT and 108 LNT samples. Median age was 60 years (range, 27-87 years). At a median follow-up of 28.5 months, 6 deaths and 16 recurrences had occurred. PTK7 expression correlations with clinicopathological features were computed and PTK7 expression effects on patient outcome were analyzed in three cohorts defined by adjuvant treatment: anthracycline-based treatment, other chemotherapy regimens (including taxane or other substances),or no chemotherapy. Association of PTK7 expression with clinicopathological features was seen only for age in PTT and nodal stage in LNT. High LN PTK7 was associated with poorer disease-free survival (DFS) in the total population (3-year DFS: low [81.7%] versus high [70.4%];P=0.016) and in patients without adjuvant chemotherapy (3-year DFS: low [91.7%] versus high [22.3%];P<0.001),but not in patients receiving adjuvant chemotherapy (P=0.552). DFS stratified by PTK7 expression was compared in treatment cohorts: In patients with low LN PTK7 expression, neither chemotherapy cohort showed significantly better survival than the no-chemotherapy cohort. In patients with high LN PTK7 expression, those receiving chemotherapy, including substances other than anthracyclines, but not those receiving only anthracycline-based chemotherapy, showed significantly better DFS than those receiving no chemotherapy (P=0.001). Our results support earlier findings that PTK7 may be a prognostic and predictive marker associated with resistance to anthracycline-based chemotherapy. Further investigations are needed to validate these findings in breast cancer
PTK 7 Is a Transforming Gene and Prognostic Marker for Breast Cancer and Nodal Metastasis Involvement
<div><p>Protein Tyrosin Kinase 7 (PTK7) is upregulated in several human cancers; however, its clinical implication in breast cancer (BC) and lymph node (LN) is still unclear. In order to investigate the function of PTK7 in mediating BC cell motility and invasivity, PTK7 expression in BC cell lines was determined. PTK7 signaling in highly invasive breast cancer cells was inhibited by a dominant-negative PTK7 mutant, an antibody against the extracellular domain of PTK7, and siRNA knockdown of PTK7. This resulted in decreased motility and invasivity of BC cells. We further examined PTK7 expression in BC and LN tissue of 128 BC patients by RT-PCR and its correlation with BC related genes like HER2, HER3, PAI1, MMP1, K19, and CD44. Expression profiling in BC cell lines and primary tumors showed association of PTK7 with ER/PR/HER2-negative (TNBC-triple negative BC) cancer. Oncomine data analysis confirmed this observation and classified PTK7 in a cluster with genes associated with agressive behavior of primary BC. Furthermore PTK7 expression was significantly different with respect to tumor size (ANOVA, p = 0.033) in BC and nodal involvement (ANOVA, p = 0.007) in LN. PTK7 expression in metastatic LN was related to shorter DFS (Cox Regression, p = 0.041). Our observations confirmed the transforming potential of PTK7, as well as its involvement in motility and invasivity of BC cells. PTK7 is highly expressed in TNBC cell lines. It represents a novel prognostic marker for BC patients and has potential therapeutic significance.</p></div
Sequential Salinomycin Treatment Results in Resistance Formation through Clonal Selection of Epithelial-Like Tumor Cells
Acquiring therapy resistance is one of the major obstacles in the treatment of patients with cancer. The discovery of the cancer stem cell (CSC)–specific drug salinomycin raised hope for improved treatment options by targeting therapy-refractory CSCs and mesenchymal cancer cells. However, the occurrence of an acquired salinomycin resistance in tumor cells remains elusive. To study the formation of salinomycin resistance, mesenchymal breast cancer cells were sequentially treated with salinomycin in an in vitro cell culture assay, and the resulting differences in gene expression and salinomycin susceptibility were analyzed. We demonstrated that long-term salinomycin treatment of mesenchymal cancer cells resulted in salinomycin-resistant cells with elevated levels of epithelial markers, such as E-cadherin and miR-200c, a decreased migratory capability, and a higher susceptibility to the classic chemotherapeutic drug doxorubicin. The formation of salinomycin resistance through the acquisition of epithelial traits was further validated by inducing mesenchymal-epithelial transition through an overexpression of miR-200c. The transition from a mesenchymal to a more epithelial-like phenotype of salinomycin-treated tumor cells was moreover confirmed in vivo, using syngeneic and, for the first time, transgenic mouse tumor models. These results suggest that the acquisition of salinomycin resistance through the clonal selection of epithelial-like cancer cells could become exploited for improved cancer therapies by antagonizing the tumor-progressive effects of epithelial-mesenchymal transition
Co-expression of Breast Cancer Related Genes and PTK7.
<p>PTK7 and BC-related genes (Her2, Her3, Pai1, MMP1, CK19 and CD44) expression was assessed by RT-PCR and compared in LN metastasis (LNmet) and tumorfree LN (LNtfr) of 128 patients. All genes (PTK7, Her2, Her3, Pai1, MMP1, CK19) showed an overexpression in LN metastasis compared to tumorfree LN.</p
PTK7 is able to confer oncogenic potential to NIH3T3 cells.
<p>NIH3T3 cells were infected with PTK7wt, PTK7DN, empty vector or v-src as a positive control and then seeded for Focus Formation Assay (A) or Colony Formation Assay in Soft Agar (B).</p
Analysis of PTK7 Expression in BC cell lines and primary tumors.
<p>(A) Classification of BC cell lines by PTK7 expression: Cell lines Hs 578T, MDA-MB-157, BT-20, MDA-MB-468, MDA-MB-231, MDA-MB-435S, MDA-MB-436, BT-549, MCF10A1, SUM-149PT classified as basal like, MDA-MB-453, Sk-BR-3, BT-474, T-74D, ZR-75-1, MDA-MB-175VII, MDA-MB 361, BT-483, ZR-75-30, MCF7, and MDA-MB415 classified as luminal cell lines were analysed by RT-PCR. Higher PTK7 expression in BC cell lines which lack expression of ER and are grouped as basal-like. (B) Heat map of genes co-expressed with PTK7 in primary breast carcinomas (van de Vijver, Oncomine), which were grouped by ER status. The colors relate to expression units which are z-normalized to depict relative values within rows. (C) Heat map of genes co-expressed with oncogene HER3 in primary breast carcinomas (van de Vijver, Oncomine).</p
Clinico-pathological features of patients.
<p>Clinico-pathological features of patients.</p