1,051 research outputs found

    Quantum computers can search arbitrarily large databases by a single query

    Full text link
    This paper shows that a quantum mechanical algorithm that can query information relating to multiple items of the database, can search a database in a single query (a query is defined as any question to the database to which the database has to return a (YES/NO) answer). A classical algorithm will be limited to the information theoretic bound of at least O(log N) queries (which it would achieve by using a binary search).Comment: Several enhancements to the original pape

    Guessing probability distributions from small samples

    Full text link
    We propose a new method for the calculation of the statistical properties, as e.g. the entropy, of unknown generators of symbolic sequences. The probability distribution p(k)p(k) of the elements kk of a population can be approximated by the frequencies f(k)f(k) of a sample provided the sample is long enough so that each element kk occurs many times. Our method yields an approximation if this precondition does not hold. For a given f(k)f(k) we recalculate the Zipf--ordered probability distribution by optimization of the parameters of a guessed distribution. We demonstrate that our method yields reliable results.Comment: 10 pages, uuencoded compressed PostScrip

    Design study of modification of m-1 liquid hydrogen turbopump for use in nuclear reactor test facility

    Get PDF
    Modification of M- 1 liquid hydrogen turbopump for use in Phoebus nuclear reacto

    High density cluster jet target for storage ring experiments

    Full text link
    The design and performance of a newly developed cluster jet target installation for hadron physics experiments are presented which, for the first time, is able to generate a hydrogen cluster jet beam with a target thickness of above 1015atoms/cm210^{15}\,\mathrm{atoms/cm}^2 at a distance of two metres behind the cluster jet nozzle. The properties of the cluster beam and of individual clusters themselves are studied at this installation. Special emphasis is placed on measurements of the target beam density as a function of the relevant parameters as well as on the cluster beam profiles. By means of a time-of-flight setup, measurements of the velocity of single clusters and velocity distributions were possible. The complete installation, which meets the requirements of future internal fixed target experiments at storage rings, and the results of the systematic studies on hydrogen cluster jets are presented and discussed.Comment: 10 pages, 18 figure

    Statistical significance of communities in networks

    Full text link
    Nodes in real-world networks are usually organized in local modules. These groups, called communities, are intuitively defined as sub-graphs with a larger density of internal connections than of external links. In this work, we introduce a new measure aimed at quantifying the statistical significance of single communities. Extreme and Order Statistics are used to predict the statistics associated with individual clusters in random graphs. These distributions allows us to define one community significance as the probability that a generic clustering algorithm finds such a group in a random graph. The method is successfully applied in the case of real-world networks for the evaluation of the significance of their communities.Comment: 9 pages, 8 figures, 2 tables. The software to calculate the C-score can be found at http://filrad.homelinux.org/cscor

    Information Storage and Retrieval for Probe Storage using Optical Diffraction Patterns

    Get PDF
    A novel method for fast information retrieval from a probe storage device is considered. It is shown that information can be stored and retrieved using the optical diffraction patterns obtained by the illumination of a large array of cantilevers by a monochromatic light source. In thermo-mechanical probe storage, the information is stored as a sequence of indentations on the polymer medium. To retrieve the information, the array of probes is actuated by applying a bending force to the cantilevers. Probes positioned over indentations experience deflection by the depth of the indentation, probes over the flat media remain un-deflected. Thus the array of actuated probes can be viewed as an irregular optical grating, which creates a data-dependent diffraction pattern when illuminated by laser light. We develop a low complexity modulation scheme, which allows the extraction of information stored in the pattern of indentations on the media from Fourier coefficients of the intensity of the diffraction pattern. We then derive a low-complexity maximum likelihood sequence detection algorithm for retrieving the user information from the Fourier coefficients. The derivation of both the modulation and the detection schemes is based on the Fraunhofer formula for data-dependent diffraction patterns. We show that for as long as the Fresnel number F<0.1, the optimal channel detector derived from Fraunhofer diffraction theory does not suffer any significant performance degradation.Comment: 14 pages, 11 figures. Version 2: minor misprints corrected, experimental section expande

    Periodic orbits of the ensemble of Sinai-Arnold cat maps and pseudorandom number generation

    Full text link
    We propose methods for constructing high-quality pseudorandom number generators (RNGs) based on an ensemble of hyperbolic automorphisms of the unit two-dimensional torus (Sinai-Arnold map or cat map) while keeping a part of the information hidden. The single cat map provides the random properties expected from a good RNG and is hence an appropriate building block for an RNG, although unnecessary correlations are always present in practice. We show that introducing hidden variables and introducing rotation in the RNG output, accompanied with the proper initialization, dramatically suppress these correlations. We analyze the mechanisms of the single-cat-map correlations analytically and show how to diminish them. We generalize the Percival-Vivaldi theory in the case of the ensemble of maps, find the period of the proposed RNG analytically, and also analyze its properties. We present efficient practical realizations for the RNGs and check our predictions numerically. We also test our RNGs using the known stringent batteries of statistical tests and find that the statistical properties of our best generators are not worse than those of other best modern generators.Comment: 18 pages, 3 figures, 9 table

    Implementing Shor's algorithm on Josephson Charge Qubits

    Full text link
    We investigate the physical implementation of Shor's factorization algorithm on a Josephson charge qubit register. While we pursue a universal method to factor a composite integer of any size, the scheme is demonstrated for the number 21. We consider both the physical and algorithmic requirements for an optimal implementation when only a small number of qubits is available. These aspects of quantum computation are usually the topics of separate research communities; we present a unifying discussion of both of these fundamental features bridging Shor's algorithm to its physical realization using Josephson junction qubits. In order to meet the stringent requirements set by a short decoherence time, we accelerate the algorithm by decomposing the quantum circuit into tailored two- and three-qubit gates and we find their physical realizations through numerical optimization.Comment: 12 pages, submitted to Phys. Rev.

    Self-avoiding walks crossing a square

    Full text link
    We study a restricted class of self-avoiding walks (SAW) which start at the origin (0, 0), end at (L,L)(L, L), and are entirely contained in the square [0,L]×[0,L][0, L] \times [0, L] on the square lattice Z2{\mathbb Z}^2. The number of distinct walks is known to grow as λL2+o(L2)\lambda^{L^2+o(L^2)}. We estimate λ=1.744550±0.000005\lambda = 1.744550 \pm 0.000005 as well as obtaining strict upper and lower bounds, 1.628<λ<1.782.1.628 < \lambda < 1.782. We give exact results for the number of SAW of length 2L+2K2L + 2K for K=0,1,2K = 0, 1, 2 and asymptotic results for K=o(L1/3)K = o(L^{1/3}). We also consider the model in which a weight or {\em fugacity} xx is associated with each step of the walk. This gives rise to a canonical model of a phase transition. For x<1/μx < 1/\mu the average length of a SAW grows as LL, while for x>1/μx > 1/\mu it grows as L2L^2. Here μ\mu is the growth constant of unconstrained SAW in Z2{\mathbb Z}^2. For x=1/μx = 1/\mu we provide numerical evidence, but no proof, that the average walk length grows as L4/3L^{4/3}. We also consider Hamiltonian walks under the same restriction. They are known to grow as τL2+o(L2)\tau^{L^2+o(L^2)} on the same L×LL \times L lattice. We give precise estimates for τ\tau as well as upper and lower bounds, and prove that τ<λ.\tau < \lambda.Comment: 27 pages, 9 figures. Paper updated and reorganised following refereein

    Efficient Triangle Counting in Large Graphs via Degree-based Vertex Partitioning

    Full text link
    The number of triangles is a computationally expensive graph statistic which is frequently used in complex network analysis (e.g., transitivity ratio), in various random graph models (e.g., exponential random graph model) and in important real world applications such as spam detection, uncovering of the hidden thematic structure of the Web and link recommendation. Counting triangles in graphs with millions and billions of edges requires algorithms which run fast, use small amount of space, provide accurate estimates of the number of triangles and preferably are parallelizable. In this paper we present an efficient triangle counting algorithm which can be adapted to the semistreaming model. The key idea of our algorithm is to combine the sampling algorithm of Tsourakakis et al. and the partitioning of the set of vertices into a high degree and a low degree subset respectively as in the Alon, Yuster and Zwick work treating each set appropriately. We obtain a running time O(m+m3/2Δlogntϵ2)O \left(m + \frac{m^{3/2} \Delta \log{n}}{t \epsilon^2} \right) and an ϵ\epsilon approximation (multiplicative error), where nn is the number of vertices, mm the number of edges and Δ\Delta the maximum number of triangles an edge is contained. Furthermore, we show how this algorithm can be adapted to the semistreaming model with space usage O(m1/2logn+m3/2Δlogntϵ2)O\left(m^{1/2}\log{n} + \frac{m^{3/2} \Delta \log{n}}{t \epsilon^2} \right) and a constant number of passes (three) over the graph stream. We apply our methods in various networks with several millions of edges and we obtain excellent results. Finally, we propose a random projection based method for triangle counting and provide a sufficient condition to obtain an estimate with low variance.Comment: 1) 12 pages 2) To appear in the 7th Workshop on Algorithms and Models for the Web Graph (WAW 2010
    corecore