1,860 research outputs found
Geometry and Topology of Escape II: Homotopic Lobe Dynamics
We continue our study of the fractal structure of escape-time plots for
chaotic maps. In the preceding paper, we showed that the escape-time plot
contains regular sequences of successive escape segments, called epistrophes,
which converge geometrically upon each endpoint of every escape segment. In the
present paper, we use topological techniques to: (1) show that there exists a
minimal required set of escape segments within the escape-time plot; (2)
develop an algorithm which computes this minimal set; (3) show that the minimal
set eventually displays a recursive structure governed by an ``Epistrophe Start
Rule'': a new epistrophe is spawned Delta = D+1 iterates after the segment to
which it converges, where D is the minimum delay time of the complex.Comment: 13 pages, 8 figures, to appear in Chaos, second of two paper
Geometry and Topology of Escape I: Epistrophes
We consider a dynamical system given by an area-preserving map on a
two-dimensional phase plane and consider a one-dimensional line of initial
conditions within this plane. We record the number of iterates it takes a
trajectory to escape from a bounded region of the plane as a function along the
line of initial conditions, forming an ``escape-time plot''. For a chaotic
system, this plot is in general not a smooth function, but rather has many
singularities at which the escape time is infinite; these singularities form a
complicated fractal set. In this article we prove the existence of regular
repeated sequences, called ``epistrophes'', which occur at all levels of
resolution within the escape-time plot. (The word ``epistrophe'' comes from
rhetoric and means ``a repeated ending following a variable beginning''.) The
epistrophes give the escape-time plot a certain self-similarity, called
``epistrophic'' self-similarity, which need not imply either strict or
asymptotic self-similarity.Comment: 15 pages, 9 figures, to appear in Chaos, first of two paper
Analytically Derived Switching-Functions For Exact H-2(+) Eigenstates
Electron translation factors (ETF\u27s) appropriate for slow atomic collisions may be constructed using switching functions. In this paper we derive a set of switching functions for the H2+ system by an analytical two-center decomposition of the exact molecular eigenstates. These switching functions are closely approximated by the simple form f=bη, where η is the angle variable of prolate spheroidal coordinates. For given united atom angular momentum quantum numbers (l,m), the characteristic parameter blm depends only on the quantity c2=-âR22, where â is the electronic binding energy and R the internuclear distance in a.u. The resulting parameters are in excellent agreement with those found in our earlier work by a heuristic optimization scheme based on a study of coupling matrix-element behavior for a number of H2+ states. An approximate extension to asymmetric cases (HeH2+) has also been made. Nonadiabatic couplings based on these switching functions have been used in recent close-coupling calculations for H+-H(1s) collisions and He2+-H(1s) collisions at energies 1.0-20 keV
Accumulation of driver and passenger mutations during tumor progression
Major efforts to sequence cancer genomes are now occurring throughout the
world. Though the emerging data from these studies are illuminating, their
reconciliation with epidemiologic and clinical observations poses a major
challenge. In the current study, we provide a novel mathematical model that
begins to address this challenge. We model tumors as a discrete time branching
process that starts with a single driver mutation and proceeds as each new
driver mutation leads to a slightly increased rate of clonal expansion. Using
the model, we observe tremendous variation in the rate of tumor development -
providing an understanding of the heterogeneity in tumor sizes and development
times that have been observed by epidemiologists and clinicians. Furthermore,
the model provides a simple formula for the number of driver mutations as a
function of the total number of mutations in the tumor. Finally, when applied
to recent experimental data, the model allows us to calculate, for the first
time, the actual selective advantage provided by typical somatic mutations in
human tumors in situ. This selective advantage is surprisingly small, 0.005 +-
0.0005, and has major implications for experimental cancer research
Recommended from our members
Long Duration Performance of High Temperature Irradiation Resistant Thermocouples
Many advanced nuclear reactor designs require new fuel, cladding, and structural materials. Data are needed to characterize the performance of these new materials in high temperature, radiation conditions. However, traditional methods for measuring temperature inpile degrade at temperatures above 1100 ÂșC. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple that contains alloys of molybdenum and niobium. To verify the performance of INLâs recommended thermocouple design, a series of high temperature (from 1200 to 1800 ÂșC) long duration (up to six months) tests has been initiated. This paper summarizes results from the tests that have been completed. Data are presented from 4000 hour tests conducted at 1200 and 1400 ÂșC that demonstrate the stability of this thermocouple (less than 2% drift). In addition, post test metallographic examinations are discussed which confirm the compatibility of thermocouple materials throughout these long duration, high temperature tests
Recommended from our members
Evaluation of Specialized Thermocouples for High-Temperature In-Pile Testing
Many advanced nuclear reactor designs require new fuel, cladding, and structural materials. Data are needed to characterize the performance of these new materials in high temperature, oxidizing, and radiation conditions. To obtain this data, robust instrumentation is needed that can survive proposed test conditions. Standard thermocuoples for measuring temperature in-pile degrade at temperatures above 1100 ÂșC. Hence, INL initiated a project to develop specialized thermocouples for high temperature in-pile applications. Results from efforts to develop, fabricate, and evaluate specialized high-temperature thermocouples for in-pile applications suggest that several material combinations are viable. Tests show that several low neutron cross-section candidate materials are resistant to material interactions and remain ductile at high temperatures. In addition, results indicate that the thermoelectric response is singlevalued and repeatable with acceptable resolution for the candidate thermoelements considered. The final selection of the thermocouple materials will depend on the desired peak temperature and accuracy requirements. If thermocouples are needed that measure temperatures at 1600 ÂșC or higher, the doped Mo / Nb-1%Zr and Mo-1.6% Nb / Nb-1%Zr thermoelement wire combinations are recommended with HfO2 insulation, and a Nb-1%Zr sheath. Additional evaluations are underway to characterize the performance of this proposed thermocouple design. INL has worked to optimize this thermocoupleâs stability. With appropriate heat treatment and fabrication approaches, results indicate that the effects of thermal cycling on the calibration of the proposed thermocouple design can be minimized. INL has initiated a series of high temperature (from 1200 to 1800 ÂșC) long duration (up to six months) tests. Initial results indicate the INL-developed thermocoupleâs termoelectric response is stable with less than 15 ÂșC drift observed in over 3500 hours of the planned 4000 hours of tests at 1200 ÂșC. In comparison, commercially-available Type K and N thermocouples included in these 1200 ÂșC tests have experienced drifts up to of over100 ÂșC
Recommended from our members
[Arctic] Greenland ice sheet [in âState of the Climate in 2012â]
Melting at the surface of the Greenland Ice Sheet set new records for extent and melt index (i.e., the number of days on which melting occurred multiplied by the area where melting was detected) for the period 1979â2012, according to passive microwave observations (e.g., Tedesco 2007, 2009; Mote and Anderson 1995). Melt extent reached ~97% of the ice sheet surface during a rare, ice-sheet-wide event on 11â12 July (Fig. 5.13a; Nghiem et al. 2012). This was almost four times greater than the average melt extent for 1981â2010. The 2012 standardized melting index (SMI, defined as the melting index minus its average and divided by its standard deviation) was +2.4, almost twice the previous record of about +1.3 set in 2010
Differential cross sections for pion charge exchange on the proton at 27.5 MeV
We have measured pion single charge exchange differential cross sections on
the proton at 27.5 MeV incident kinetic energy in the center of
momentum angular range between and . The extracted cross
sections are compared with predictions of the standard pion-nucleon partial
wave analysis and found to be in excellent agreement.Comment: ReVTeX v3.0 with aps.sty, 23 pages in e-print format, 7 PostScript
Figures and 4 Tables, also available via anonymous ftp at
ftp://helena.phys.virginia.edu/pub/preprints/scx.p
The Negative Feedback-Loop between the Oncomir Mir-24-1 and Menin Modulates the Men1 Tumorigenesis by Mimicking the âKnudsonâs Second Hitâ
Multiple endocrine neoplasia type 1 (MEN1) syndrome is a rare hereditary cancer disorder characterized by tumors of the parathyroids, of the neuroendocrine cells, of the gastro-entero-pancreatic tract, of the anterior pituitary, and by non-endocrine neoplasms and lesions. MEN1 gene, a tumor suppressor gene, encodes menin protein. Loss of heterozygosity at 11q13 is typical of MEN1 tumors, in agreement with the Knudsonâs two-hit hypothesis. In silico analysis with Target Scan, Miranda and Pictar-Vert softwares for the prediction of miRNA targets indicated miR-24-1 as capable to bind to the 3âČUTR of MEN1 mRNA. We investigated this possibility by analysis of miR-24-1 expression profiles in parathyroid adenomatous tissues from MEN1 gene mutation carriers, in their sporadic non-MEN1 counterparts, and in normal parathyroid tissue. Interestingly, the MEN1 tumorigenesis seems to be under the control of a ânegative feedback loopâ between miR-24-1 and menin protein, that mimics the second hit of Knudsonâs hypothesis and that could buffer the effect of the stochastic factors that contribute to the onset and progression of this disease. Our data show an alternative way to MEN1 tumorigenesis and, probably, to the âtwo-hit dogmaâ. The functional significance of this regulatory mechanism in MEN1 tumorigenesis is also the basis for opening future developments of RNA antagomir(s)-based strategies in the in vivo control of tumorigenesis in MEN1 carriers
- âŠ