1,642 research outputs found
The Double Disparity Facing Rural Local Health Departments
Residents of rural jurisdictions face significant health challenges, including some of the highest rates of risky health behaviors and worst health outcomes of any group in the country. Rural communities are served by smaller local health departments (LHDs) that are more understaffed and underfunded than their suburban and urban peers. As a result of history and current need, rural LHDs are more likely than their urban peers to be providers of direct health services, leading to relatively lower levels of population-focused activities. This review examines the double disparity faced by rural LHDs and their constituents: pervasively poorer health behaviors and outcomes and a historical lack of investment by local, state, and federal public health entities
Recommended from our members
[Arctic] Greenland ice sheet [in “State of the Climate in 2012”]
Melting at the surface of the Greenland Ice Sheet set new records for extent and melt index (i.e., the number of days on which melting occurred multiplied by the area where melting was detected) for the period 1979–2012, according to passive microwave observations (e.g., Tedesco 2007, 2009; Mote and Anderson 1995). Melt extent reached ~97% of the ice sheet surface during a rare, ice-sheet-wide event on 11–12 July (Fig. 5.13a; Nghiem et al. 2012). This was almost four times greater than the average melt extent for 1981–2010. The 2012 standardized melting index (SMI, defined as the melting index minus its average and divided by its standard deviation) was +2.4, almost twice the previous record of about +1.3 set in 2010
Differential cross sections for pion charge exchange on the proton at 27.5 MeV
We have measured pion single charge exchange differential cross sections on
the proton at 27.5 MeV incident kinetic energy in the center of
momentum angular range between and . The extracted cross
sections are compared with predictions of the standard pion-nucleon partial
wave analysis and found to be in excellent agreement.Comment: ReVTeX v3.0 with aps.sty, 23 pages in e-print format, 7 PostScript
Figures and 4 Tables, also available via anonymous ftp at
ftp://helena.phys.virginia.edu/pub/preprints/scx.p
Recommended from our members
Viability of Pushrod Dilatometry Techniques for High Temperature In-Pile Measurements
To evaluate the performance of new fuel, cladding, and structural materials for use in advanced and existing nuclear reactors, robust instrumentation is needed. Changes in material deformation are typically evaluated out-of-pile, where properties of materials are measured after samples were irradiated for a specified length of time. To address this problem, a series of tests were performed to examine the viability of using pushrod dilatometer techniques for in-pile instrumentation to measure deformation. The tests were performed in three phases. First, familiarity was gained in the use and accuracy of this system by testing samples with well defined thermal elongation characteristics. Second, high temperature data for steels, specifically SA533 Grade B, Class 1 (SA533B1) Low Alloy Steel and Stainless Steel 304 (SS304), found in Light Water Reactor (LWR) vessels, were aquired. Finally, data were obtained from a short pushrod in a horizontal geometry to data obtained from a longer pushrod in a vertical geometry, the configuration likely to be used for in-situ measurements. Results of testing show that previously accepted data for the structural steels tested, SA533B1 and SS304, are inaccurate at high temperatures (above 500 oC) due to extrpolation of high temperature data. This is especially true for SA533B1, as previous data do not account for the phase transformation of the material between 730 oC and 830 oC. Also, comparison of results for horizontal and vertical configurations show a maximum percent difference of 2.02% for high temperature data
Recommended from our members
New Sensors for In-Pile Temperature Detection at the Advanced Test Reactor National Scientific User Facility
The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation’s energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile detection of temperature at various irradiation locations in the ATR
Thermal Density Functional Theory in Context
This chapter introduces thermal density functional theory, starting from the
ground-state theory and assuming a background in quantum mechanics and
statistical mechanics. We review the foundations of density functional theory
(DFT) by illustrating some of its key reformulations. The basics of DFT for
thermal ensembles are explained in this context, as are tools useful for
analysis and development of approximations. We close by discussing some key
ideas relating thermal DFT and the ground state. This review emphasizes thermal
DFT's strengths as a consistent and general framework.Comment: Submitted to Spring Verlag as chapter in "Computational Challenges in
Warm Dense Matter", F. Graziani et al. ed
Centrality dependence of the expansion dynamics in Pb-Pb collisions at 158 A GeV/c
Two-particle correlation functions of negatively charged hadrons from Pb-Pb
collisions at 158 GeV/c per nucleon have been measured by the WA97 experiment
at the CERN SPS. A Coulomb correction procedure that assumes an expanding
source has been implemented. Within the framework of an expanding thermalized
source model the size and dynamical state of the collision fireball at
freeze-out have been reconstructed as a function of the centrality of the
collision. Less central collisions exhibit a different dynamics than central
ones: both transverse and longitudinal expansion velocities are slower, the
expansion duration is shorter and the system freezes out showing smaller
dimensions and higher temperature.Comment: 22 pages, 11 figures, Te
Recommended from our members
Enhancements to High Temperature In-Pile Thermocouple Performance
A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped molybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of the art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing them to become familiar with the techniques and equipment used for specialized high temperature instrumentation fabrication and evaluation and to author/coauthor several key conference papers and journal articles
The Negative Feedback-Loop between the Oncomir Mir-24-1 and Menin Modulates the Men1 Tumorigenesis by Mimicking the “Knudson’s Second Hit”
Multiple endocrine neoplasia type 1 (MEN1) syndrome is a rare hereditary cancer disorder characterized by tumors of the parathyroids, of the neuroendocrine cells, of the gastro-entero-pancreatic tract, of the anterior pituitary, and by non-endocrine neoplasms and lesions. MEN1 gene, a tumor suppressor gene, encodes menin protein. Loss of heterozygosity at 11q13 is typical of MEN1 tumors, in agreement with the Knudson’s two-hit hypothesis. In silico analysis with Target Scan, Miranda and Pictar-Vert softwares for the prediction of miRNA targets indicated miR-24-1 as capable to bind to the 3′UTR of MEN1 mRNA. We investigated this possibility by analysis of miR-24-1 expression profiles in parathyroid adenomatous tissues from MEN1 gene mutation carriers, in their sporadic non-MEN1 counterparts, and in normal parathyroid tissue. Interestingly, the MEN1 tumorigenesis seems to be under the control of a “negative feedback loop” between miR-24-1 and menin protein, that mimics the second hit of Knudson’s hypothesis and that could buffer the effect of the stochastic factors that contribute to the onset and progression of this disease. Our data show an alternative way to MEN1 tumorigenesis and, probably, to the “two-hit dogma”. The functional significance of this regulatory mechanism in MEN1 tumorigenesis is also the basis for opening future developments of RNA antagomir(s)-based strategies in the in vivo control of tumorigenesis in MEN1 carriers
- …