14,100 research outputs found

    Petiolate wings: effects on the leading-edge vortex in flapping flight

    Get PDF
    The wings of many insect species including crane flies and damselflies are petiolate (on stalks), with the wing planform beginning some distance away from the wing hinge, rather than at the hinge. The aerodynamic impact of flapping petiolate wings is relatively unknown, particularly on the formation of the lift-augmenting leading-edge vortex (LEV): a key flow structure exploited by many insects, birds and bats to enhance their lift coefficient. We investigated the aerodynamic implications of petiolation P using particle image velocimetry flow field measurements on an array of rectangular wings of aspect ratio 3 and petiolation values of P = 1–3. The wings were driven using a mechanical device, the ‘Flapperatus’, to produce highly repeatable insect-like kinematics. The wings maintained a constant Reynolds number of 1400 and dimensionless stroke amplitude Λ* (number of chords traversed by the wingtip) of 6.5 across all test cases. Our results showed that for more petiolate wings the LEV is generally larger, stronger in circulation, and covers a greater area of the wing surface, particularly at the mid-span and inboard locations early in the wing stroke cycle. In each case, the LEV was initially arch-like in form with its outboard end terminating in a focus-sink on the wing surface, before transitioning to become continuous with the tip vortex thereafter. In the second half of the wing stroke, more petiolate wings exhibit a more detached LEV, with detachment initiating at approximately 70% and 50% span for P = 1 and 3, respectively. As a consequence, lift coefficients based on the LEV are higher in the first half of the wing stroke for petiolate wings, but more comparable in the second half. Time-averaged LEV lift coefficients show a general rise with petiolation over the range tested.This work was supported by an EPSRC Career Acceleration Fellowship to R.J.B. (EP/H004025/1)

    The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing

    Get PDF
    Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (cˉ\bar{c}). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5cˉ6.5\bar{c} (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR>1.5\mathrm{AR}\gt 1.5 around mid-stroke at ∼70%\sim 70\% span, and initiated sooner over higher aspect ratio wings. At AR>3\mathrm{AR}\gt 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR∼5,\mathrm{AR}\sim 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings

    Full Configuration Interaction wave function as a formal solution to the Optimized Effective Potential and Kohn-Sham models in finite basis sets

    Full text link
    Using finite basis sets, it is shown how to construct a local Hamiltonian, such that one of its infinitely many degenerate eigenfunctions is the ground state full configuration interaction (FCI) wave function in that basis set. Formally, the local potential of this Hamiltonian is the optimized effective potential and the exact Kohn-Sham potential at the same time, because the FCI wave function yields the exact ground-state density and energy. It is not the aim of this paper to provide a new algorithm for obtaining FCI wave functions. A new potential is the goal

    The η6\eta_6 at LEP and TRISTAN

    Full text link
    The η6\eta_6 is a ``heavy axion'' remnant of dynamical electroweak symmetry breaking by a color sextet quark condensate. Electroweak scale color instanton interactions allow it to be both very massive and yet be responsible for Strong CP conservation in the color triplet quark sector. It may have been seen at LEP via its two-photon decay mode and at TRISTAN via its hadronic decay modes.Comment: 11 pages, ANL-HEP-PR-93-4/BROWN-HET-87

    Not a Dead Horse

    Full text link

    Active heat exchange system development for latent heat thermal energy storage

    Get PDF
    Active heat exchange concepts for use with thermal energy storage systems in the temperature range of 250 C to 350 C, using the heat of fusion of molten salts for storing thermal energy are described. Salt mixtures that freeze and melt in appropriate ranges are identified and are evaluated for physico-chemical, economic, corrosive and safety characteristics. Eight active heat exchange concepts for heat transfer during solidification are conceived and conceptually designed for use with selected storage media. The concepts are analyzed for their scalability, maintenance, safety, technological development and costs. A model for estimating and scaling storage system costs is developed and is used for economic evaluation of salt mixtures and heat exchange concepts for a large scale application. The importance of comparing salts and heat exchange concepts on a total system cost basis, rather than the component cost basis alone, is pointed out. The heat exchange concepts were sized and compared for 6.5 MPa/281 C steam conditions and a 1000 MW(t) heat rate for six hours. A cost sensitivity analysis for other design conditions is also carried out

    Music and Language: Exploring an Artificial Music Grammar

    Get PDF
    Research regarding the brain mechanisms that underlie music and language processing supports two main interpretations: domain-specificity and domain-generality. Evidence from neuropsychology literature, specifically from amusia research, supports domain-specific mechanisms (Peretz & Coltheart, 2003) but recent neuroimaging and behavioral evidence supports overlapping mechanisms, especially for syntax processing (Patel, 2008). The present study used an artificial music grammar in order to test participants\u27 ability to learn a new music grammar as well as to observe a possible interaction between music and language syntax processing. Although participants were able to learn the artificial music grammar, a language task was not affected by errors in the new grammar as has been found with Western music-syntax errors (Sieve, Rosenberg, & Patel, 2009). Future research should consider extending exposure to the artificial grammar to allow for better learning in order for errors in the new grammar to affect the processing of language syntax

    Spectrophotovoltaic orbital power generation

    Get PDF
    A system with 1000 : 1 concentration ratio is defined, using a cassegrain telescope as the first stage concentration (270 x) and compound parabolic concentrators (CPC) for the second stage concentration of 4.7 x for each spectral band. Using reported state of the art (S.O.A.) solar cells device parameters and considering structural losses due to optics and beamsplitters, the efficiencies of one to four cell systems were calculated with efficiencies varying from approximately 22% to 30%. Taking into account cost of the optics, beamsplitter, radiator, and the cost of developing new cells the most cost effective system is the GaAs/Si system

    Habitat selection home range size and movements of bobcats in north-central Montana

    Get PDF

    The Tacoma, Washington ASARCO Copper Smelter Dislocated Worker Project

    Get PDF
    • …
    corecore