198 research outputs found

    Influence of parallel magnetic fields on a single-layer two-dimensional electron system with a hopping mechanism of conductivity

    Full text link
    Large positive (P) magnetoresistance (MR) has been observed in parallel magnetic fields in a single 2D layer in a delta-doped GaAs/AlGaAs heterostructure with a variable-range-hopping (VRH) mechanism of conductivity. Effect of large PMR is accompanied in strong magnetic fields by a substantial change in the character of the temperature dependence of the conductivity. This implies that spins play an important role in 2D VRH conductivity because the processes of orbital origin are not relevant to the observed effect. A possible explanation involves hopping via double occupied states in the upper Hubbard band, where the intra-state correlation of spins is important.Comment: 10 pages, 4 jpeg figure

    Universal Crossover between Efros-Shklovskii and Mott Variable-Range-Hopping Regimes

    Full text link
    A universal scaling function, describing the crossover between the Mott and the Efros-Shklovskii hopping regimes, is derived, using the percolation picture of transport in strongly localized systems. This function is agrees very well with experimental data. Quantitative comparison with experiment allows for the possible determination of the role played by polarons in the transport.Comment: 7 pages + 1 figure, Revte

    Aligned nanofibres made of poly(3-hydroxybutyrate) grafted to hyaluronan for potential healthcare applications

    Get PDF
    In this work, a hybrid copolymer consisting of poly(3-hydroxybutyrate) grafted to hyaluronic acid (HA) was synthesised and characterised. Once formed, the P(3HB)-g-HA copolymer was soluble in water allowing a green electrospinning process. The diameters of nanofibres can be tailored by simply varying the Mw of polymer. The optimization of the process allowed to produce fibres of average diameter in the range of 100-150 nm and low polydispersity. The hydrophobic modification has not only increased the fibre diameter, but also the obtained layers were homogenous. At the nanoscale, the hybrid copolymer exhibited an unusual hairy topography. Moreover, the hardness and tensile properties of the hybrid were found to be superior compared to fibres made of unmodified HA. Particularly, this reinforcement was achieved at the longitudinal direction. Additionally, this work reports the use in the composition of a water-soluble copolymer containing photo cross-linkable moieties to produce insoluble materials post-electrospinning. The derivatives as well as their nanofibrous mats retain the biocompatibility of the natural polymers used for the fabrication

    Variable-range hopping conductivity in the copper-oxygen chains of La_3Sr_3Ca_8Cu_24O_41

    Full text link
    We show that the spin chain/ladder compound La_3Sr_3Ca_8Cu_24O_41 is an insulator with hopping transport along the chains. In the temperature range 35 - 280 K, DC conductivity sigma_{DC}(T) follows Mott's law of variable-range hopping conduction; the frequency dependence has the form sigma(\nu, T) = \sigma_{DC}(T) + A(T)\nu^{s}, where s \approx 1. The conduction mechanism changes from variable-range hopping to nearest-neighbor hopping around T_{c} =300 K. The chain array thus behaves like a one-dimensional disordered system. Disorder is due to random structural distortions of chains induced by irregular coordination of the La/Sr/Ca ions.Comment: 4 pages, 3 figures, accepted for publication in PR

    Electron Beam-Induced Writing of Nanoscale Iron Wires on a Functional Metal Oxide

    Get PDF
    Electron beam-induced surface activation (EBISA) has been used to grow wires of iron on rutile TiO2(110)-(1 × 1) in ultrahigh vacuum. The wires have a width down to ∼20 nm and hence have potential utility as interconnects on this dielectric substrate. Wire formation was achieved using an electron beam from a scanning electron microscope to activate the surface, which was subsequently exposed to Fe(CO)5. On the basis of scanning tunneling microscopy and Auger electron spectroscopy measurements, the activation mechanism involves electron beam-induced surface reduction and restructuring

    Amelioration of Acute Kidney Injury in Lipopolysaccharide-Induced Systemic Inflammatory Response Syndrome by an Aldose Reductase Inhibitor, Fidarestat

    Get PDF
    Systemic inflammatory response syndrome is a fatal disease because of multiple organ failure. Acute kidney injury is a serious complication of systemic inflammatory response syndrome and its genesis is still unclear posing a difficulty for an effective treatment. Aldose reductase (AR) inhibitor is recently found to suppress lipopolysaccharide (LPS)-induced cardiac failure and its lethality. We studied the effects of AR inhibitor on LPS-induced acute kidney injury and its mechanism.Mice were injected with LPS and the effects of AR inhibitor (Fidarestat 32 mg/kg) before or after LPS injection were examined for the mortality, severity of renal failure and kidney pathology. Serum concentrations of cytokines (interleukin-1β, interleukin-6, monocyte chemotactic protein-1 and tumor necrosis factor-α) and their mRNA expressions in the lung, liver, spleen and kidney were measured. We also evaluated polyol metabolites in the kidney.Mortality rate within 72 hours was significantly less in LPS-injected mice treated with AR inhibitor both before (29%) and after LPS injection (40%) than untreated mice (90%). LPS-injected mice showed marked increases in blood urea nitrogen, creatinine and cytokines, and AR inhibitor treatment suppressed the changes. LPS-induced acute kidney injury was associated with vacuolar degeneration and apoptosis of renal tubular cells as well as infiltration of neutrophils and macrophages. With improvement of such pathological findings, AR inhibitor treatment suppressed the elevation of cytokine mRNA levels in multiple organs and renal sorbitol accumulation.AR inhibitor treatment ameliorated LPS-induced acute kidney injury, resulting in the lowered mortality

    Influence of band width on the scattered ion yield spectra of a He + Ion by resonant or quasi-resonant charge exchange neutralization

    Get PDF
    The influence of the band structure, especially the bandwidth, on the scattered ion yield spectra of a He+ ion by the resonant or quasi-resonant neutralization was theoretically examined using quantum rate equations. When calculating the scattered ion yield spectra of He+ to simulate the experimental data, we observed that the band structure, especially the bandwidth, had a strong influence on the spectra at relatively low incident He+ ion energies of less than several hundred eV. Through many simulations, it was determined that theoretical calculations that include bandwidth calculation can simulate or reproduce the experimentally observed spectra of He+-In, He+-Ga, and He+-Sn systems. In contrast, simulations not including bandwidth simulation could neither reproduce nor account for such spectra. Furthermore, the calculated ion survival probability (ISP) at low incident ion energies tended to decrease with increasing bandwidth. This decrease in ISP probably corresponds to the relatively small scattered ion yield usually observed at low incident ion energies. Theoretically, such a decrease indicates that a He+ ion with a low incident energy can be easily neutralized on the surface when the bandwidth is large
    corecore