2,022 research outputs found
Origin of rebounds with a restitution coefficient larger than unity in nanocluster collisions
We numerically investigate the mechanism of super rebounds for head-on
collisions between nanoclusters in which the restitution coefficient is larger
than unity. It is confirmed that the temperature and the entropy of the
nanocluters decrease after the super rebounds by our molecular dynamics
simulations. It is also found that the initial metastable structure plays a key
role for the emergence of the super rebounds.Comment: 8 pages, 10 figures, to be published in Phys. Rev.
A realistic two-lane traffic model for highway traffic
A two-lane extension of a recently proposed cellular automaton model for
traffic flow is discussed. The analysis focuses on the reproduction of the lane
usage inversion and the density dependence of the number of lane changes. It is
shown that the single-lane dynamics can be extended to the two-lane case
without changing the basic properties of the model which are known to be in
good agreement with empirical single-vehicle data. Therefore it is possible to
reproduce various empirically observed two-lane phenomena, like the
synchronization of the lanes, without fine-tuning of the model parameters
Steady state solutions of hydrodynamic traffic models
We investigate steady state solutions of hydrodynamic traffic models in the
absence of any intrinsic inhomogeneity on roads such as on-ramps. It is shown
that typical hydrodynamic models possess seven different types of inhomogeneous
steady state solutions. The seven solutions include those that have been
reported previously only for microscopic models. The characteristic properties
of wide jam such as moving velocity of its spatiotemporal pattern and/or
out-flux from wide jam are shown to be uniquely determined and thus independent
of initial conditions of dynamic evolution. Topological considerations suggest
that all of the solutions should be common to a wide class of traffic models.
The results are discussed in connection with the universality conjecture for
traffic models. Also the prevalence of the limit-cycle solution in a recent
study of a microscopic model is explained in this approach.Comment: 9 pages, 6 figure
Excitation and relaxation in atom-cluster collisions
Electronic and vibrational degrees of freedom in atom-cluster collisions are
treated simultaneously and self-consistently by combining time-dependent
density functional theory with classical molecular dynamics. The gradual change
of the excitation mechanisms (electronic and vibrational) as well as the
related relaxation phenomena (phase transitions and fragmentation) are studied
in a common framework as a function of the impact energy (eV...MeV). Cluster
"transparency" characterized by practically undisturbed atom-cluster
penetration is predicted to be an important reaction mechanism within a
particular window of impact energies.Comment: RevTeX (4 pages, 4 figures included with epsf
Optimizing Traffic Lights in a Cellular Automaton Model for City Traffic
We study the impact of global traffic light control strategies in a recently
proposed cellular automaton model for vehicular traffic in city networks. The
model combines basic ideas of the Biham-Middleton-Levine model for city traffic
and the Nagel-Schreckenberg model for highway traffic. The city network has a
simple square lattice geometry. All streets and intersections are treated
equally, i.e., there are no dominant streets. Starting from a simple
synchronized strategy we show that the capacity of the network strongly depends
on the cycle times of the traffic lights. Moreover we point out that the
optimal time periods are determined by the geometric characteristics of the
network, i.e., the distance between the intersections. In the case of
synchronized traffic lights the derivation of the optimal cycle times in the
network can be reduced to a simpler problem, the flow optimization of a single
street with one traffic light operating as a bottleneck. In order to obtain an
enhanced throughput in the model improved global strategies are tested, e.g.,
green wave and random switching strategies, which lead to surprising results.Comment: 13 pages, 10 figure
Intelligent Controlling Simulation of Traffic Flow in a Small City Network
We propose a two dimensional probabilistic cellular automata for the
description of traffic flow in a small city network composed of two
intersections. The traffic in the network is controlled by a set of traffic
lights which can be operated both in fixed-time and a traffic responsive
manner. Vehicular dynamics is simulated and the total delay experienced by the
traffic is evaluated within specified time intervals. We investigate both
decentralized and centralized traffic responsive schemes and in particular
discuss the implementation of the {\it green-wave} strategy. Our investigations
prove that the network delay strongly depends on the signalisation strategy. We
show that in some traffic conditions, the application of the green-wave scheme
may destructively lead to the increment of the global delay.Comment: 8 pages, 10 eps figures, Revte
Optimised Traffic Flow at a Single Intersection: Traffic Responsive signalisation
We propose a stochastic model for the intersection of two urban streets. The
vehicular traffic at the intersection is controlled by a set of traffic lights
which can be operated subject to fix-time as well as traffic adaptive schemes.
Vehicular dynamics is simulated within the framework of the probabilistic
cellular automata and the delay experienced by the traffic at each individual
street is evaluated for specified time intervals. Minimising the total delay of
both streets gives rise to the optimum signalisation of traffic lights. We
propose some traffic responsive signalisation algorithms which are based on the
concept of cut-off queue length and cut-off density.Comment: 10 pages, 11 eps figs, to appear in J. Phys.
Simulation of cohesive head-on collisions of thermally activated nanoclusters
Impact phenomena of nanoclusters subject to thermal fluctuations are
numerically investigated. From the molecular dynamics simulation for colliding
two identical clusters, it is found that the restitution coefficient for
head-on collisions has a peak at a colliding speed due to the competition
between the cohesive interaction and the repulsive interaction of colliding
clusters. Some aspects of the collisions can be understood by the theory by
Brilliantov {\it et al.} (Phys. Rev. E {\bf 76}, 051302 (2007)), but many new
aspects are found from the simulation. In particular, we find that there are
some anomalous rebounds in which the restitution coefficient is larger than
unity. The phase diagrams of rebound processes against impact speed and the
cohesive parameter can be understood by a simple phenomenology.Comment: 10 pages, 12 figures, submitted to PRE; revised content and added
reference
Performance of prototypes for the ALICE electromagnetic calorimeter
The performance of prototypes for the ALICE electromagnetic sampling
calorimeter has been studied in test beam measurements at FNAL and CERN. A
array of final design modules showed an energy resolution of about
11% / 1.7 % with a uniformity of the response
to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV.
The electromagnetic shower position resolution was found to be described by 1.5
mm 5.3 mm /. For an electron identification
efficiency of 90% a hadron rejection factor of was obtained.Comment: 10 pages, 10 figure
- …