821 research outputs found
Untreated Type 2 Diabetes and Its Complications Are Associated With Subcortical Infarctions
OBJECTIVE - To investigate the association of type 2 diabetes with subcortical infarctions. RESEARCH DESIGN AND METHODS - We investigated this association in subjects with type 2 diabetes (case subjects; n = 93) and without type 2 diabetes (control subjects; n = 186), matched by age, sex, and years of education. Participants were a subset of the Mayo Clinic Study of Aging (median age 79 years) who had undergone magnetic resonance imaging. RESULTS - The frequency of subcortical infarctions was 39% in case subjects and 29% in control subjects (odds ratio 1.59 [95% CI 0.91-2.75]). The association was stronger in case subjects without treatment (2.60 [1.11- 6.08]) and in case subjects with diabetes-related complications (1.96 [1.02-3.74]) compared with control subjects. CONCLUSIONS - These findings suggest that untreated type 2 diabetes and type 2 diabetes with complications are associated with subcortical infarctions. © 2011 by the American Diabetes Association
Measuring cognition and function in the preclinical stage of Alzheimer\u27s disease
© 2018 The Authors The Alzheimer\u27s Association\u27s Research Roundtable met in November 2016 to explore how best to measure changes in cognition and function in the preclinical stage of Alzheimer\u27s disease. This review will cover the tools and instruments currently available to identify populations for prevention trials, and measure subtle disease progression in the earliest stages of Alzheimer\u27s disease, and will include discussions of suitable cognitive, behavioral, functional, composite, and biological endpoints for prevention trials. Current prevention trials are reviewed including TOMMOROW, Alzheimer\u27s Prevention Initiative Autosomal Dominant Alzheimer\u27s Disease Trial, the Alzheimer\u27s Prevention Initiative Generation Study, and the Anti-Amyloid Treatment in Asymptomatic Alzheimer\u27s to compare current approaches and tools that are being developed
Associations between atrial cardiopathy and cerebral amyloid: The ARIC-PET study
Background Atrial fibrillation (AF) is a risk factor for cognitive decline, possibly from silent brain infarction. Left atrial changes in structure or function (atrial cardiopathy) can lead to AF but may impact cognition independently. It is unknown if AF or atrial cardiopathy also acts on Alzheimer disease-specific mechanisms, such as deposition of β-amyloid. Methods and Results A total of 316 dementia-free participants from the ARIC (Atherosclerosis Risk in Communities) study underwent florbetapir positron emission tomography, electrocardiography, and 2-dimensional echocardiography. Atrial cardiopathy was defined as ≥1: (1) left atrial volume index \u3e34 mL/
Incident Heart Failure and Cognitive Decline: The Atherosclerosis Risk in Communities Study
Cognitive impairment is found in a significant proportion of patients with heart failure (HF). While cognitive impairment may be a consequence of HF, early signs of cognitive impairment may also indicate subclinical vascular disease, and thus a risk factor for future cardiovascular events
Does amyloid deposition produce a specific atrophic signature in cognitively normal subjects?☆
The objective of our study was to evaluate whether cognitively normal (CN) elderly participants showing elevated cortical beta-amyloid (Aβ) deposition have a consistent neuroanatomical signature of brain atrophy that may characterize preclinical Alzheimer's disease (AD). 115 CN participants who were Aβ-positive (CN +) by amyloid PET imaging; 115 CN participants who were Aβ-negative (CN −); and 88 Aβ-positive mild cognitive impairment or AD participants (MCI/AD +) were identified. Cortical thickness (FreeSurfer) and gray matter volume (SPM5) were measured for 28 regions-of-interest (ROIs) across the brain and compared across groups. ROIs that best discriminated CN − from CN + differed for FreeSurfer cortical thickness and SPM5 gray matter volume. Group-wise discrimination was poor with a high degree of uncertainty in terms of the rank ordering of ROIs. In contrast, both techniques showed strong and consistent findings comparing MCI/AD + to both CN − and CN + groups, with entorhinal cortex, middle and inferior temporal lobe, inferior parietal lobe, and hippocampus providing the best discrimination for both techniques. Concordance across techniques was higher for the CN − and CN + versus MCI/AD + comparisons, compared to the CN − versus CN + comparison. The weak and inconsistent nature of the findings across technique in this study cast doubt on the existence of a reliable neuroanatomical signature of preclinical AD in elderly PiB-positive CN participants
Use of fuzzy edge single-photon emission computed tomography analysis in definite Alzheimer's disease - a retrospective study
<p>Abstract</p> <p>Background</p> <p>Definite Alzheimer's disease (AD) requires neuropathological confirmation. Single-photon emission computed tomography (SPECT) may enhance diagnostic accuracy, but due to restricted sensitivity and specificity, the role of SPECT is largely limited with regard to this purpose.</p> <p>Methods</p> <p>We propose a new method of SPECT data analysis. The method is based on a combination of parietal lobe selection (as regions-of-interest (ROI)), 3D fuzzy edge detection, and 3D watershed transformation. We applied the algorithm to three-dimensional SPECT images of human brains and compared the number of watershed regions inside the ROI between AD patients and controls. The Student's two-sample t-test was used for testing domain number equity in both groups.</p> <p>Results</p> <p>AD patients had a significantly reduced number of watershed regions compared to controls (<it>p </it>< 0.01). A sensitivity of 94.1% and specificity of 80% was obtained with a threshold value of 57.11 for the watershed domain number. The narrowing of the SPECT analysis to parietal regions leads to a substantial increase in both sensitivity and specificity.</p> <p>Conclusions</p> <p>Our non-invasive, relatively low-cost, and easy method can contribute to a more precise diagnosis of AD.</p
The impact of sound field systems on learning and attention in elementary school classrooms
Purpose: An evaluation of the installation and use of sound field systems (SFS) was carried out to investigate their impact on teaching and learning in elementary school classrooms. Methods: The evaluation included acoustic surveys of classrooms, questionnaire surveys of students and teachers and experimental testing of students with and without the use of SFS. Students ’ perceptions of classroom environments and objective data evaluating change in performance on cognitive and academic assessments with amplification over a six month period are reported. Results: Teachers were positive about the use of SFS in improving children’s listening and attention to verbal instructions. Over time students in amplified classrooms did not differ from those in nonamplified classrooms in their reports of listening conditions, nor did their performance differ in measures of numeracy, reading or spelling. Use of SFS in the classrooms resulted in significantly larger gains in performance in the number of correct items on the nonverbal measure of speed of processing and the measure of listening comprehension. Analysis controlling for classroom acoustics indicated that students ’ listening comprehension score
Retinal microvascular abnormalities and cognitive decline: The ARIC 14-year follow-up study
BACKGROUND: Because retinal and cerebral arterioles share similar pathologic processes, retinal microvascular changes are expected to be markers of cerebral small vessel disease (SVD). To better understand the role of SVD in cognitive function, we investigated the relationship between retinal microvascular abnormalities and longitudinal changes in cognitive function in a community-based study.
METHODS: A total of 803 participants underwent 4 cognitive assessments between 1990-1992 and 2004-2006, using the Word Fluency (WF) test, Digit Symbol Substitution (DSS), and Delayed Word Recall as well as retinal photography in 1993-1995. Covariate adjusted random effects linear models for repeated measures were used to determine the associations of cognitive change with specific retinal vascular abnormalities.
RESULTS: Individuals with retinopathy showed declines in executive function and psychomotor speed, with 1) an average decline in WF of -1.64 words per decade (95% confidence interval [CI] -3.3, -0.02) compared to no decline in those without retinopathy +0.06 (95% CI -0.6, 0.8) and 2) a higher frequency of rapid decliners on the DSS test.
CONCLUSION: Signs of retinal vascular changes, as markers of the cerebral microvasculature, are associated with declines in executive function and psychomotor speed, adding to the growing evidence for the role of microvascular disease in cognitive decline in the elderly
Estrogen replacement therapy and cognitive functioning in the Atherosclerosis Risk in Communities (ARIC) Study
http://deepblue.lib.umich.edu/bitstream/2027.42/55433/1/Szklo M, Estrogen replacement therapy and cognitive functioning, 1996.pd
Accuracy of dementia diagnosis—a direct comparison between radiologists and a computerized method
There has been recent interest in the application of machine learning techniques to neuroimaging-based diagnosis. These methods promise fully automated, standard PC-based clinical decisions, unbiased by variable radiological expertise. We recently used support vector machines (SVMs) to separate sporadic Alzheimer's disease from normal ageing and from fronto-temporal lobar degeneration (FTLD). In this study, we compare the results to those obtained by radiologists. A binary diagnostic classification was made by six radiologists with different levels of experience on the same scans and information that had been previously analysed with SVM. SVMs correctly classified 95% (sensitivity/specificity: 95/95) of sporadic Alzheimer's disease and controls into their respective groups. Radiologists correctly classified 65–95% (median 89%; sensitivity/specificity: 88/90) of scans. SVM correctly classified another set of sporadic Alzheimer's disease in 93% (sensitivity/specificity: 100/86) of cases, whereas radiologists ranged between 80% and 90% (median 83%; sensitivity/specificity: 80/85). SVMs were better at separating patients with sporadic Alzheimer's disease from those with FTLD (SVM 89%; sensitivity/specificity: 83/95; compared to radiological range from 63% to 83%; median 71%; sensitivity/specificity: 64/76). Radiologists were always accurate when they reported a high degree of diagnostic confidence. The results show that well-trained neuroradiologists classify typical Alzheimer's disease-associated scans comparable to SVMs. However, SVMs require no expert knowledge and trained SVMs can readily be exchanged between centres for use in diagnostic classification. These results are encouraging and indicate a role for computerized diagnostic methods in clinical practice
- …