10 research outputs found

    Nanostructure-modulated planar high spectral resolution spectro-polarimeter

    Get PDF
    We present a planar spectro-polarimeter based on Fabry-P{\'e}rot cavities with embedded polarization-sensitive high-index nanostructures. A 7 μ7~\mum-thick spectro-polarimetric system for 3 spectral bands and 2 linear polarization states is experimentally demonstrated. Furthermore, an optimal design is theoretically proposed, estimating that a system with a bandwidth of 127~nm and a spectral resolution of 1~nm is able to reconstruct the first three Stokes parameters \textcolor{black}{with a signal-to-noise ratio of -13.14~dB with respect to the the shot noise limited SNR}. The pixelated spectro-polarimetric system can be directly integrated on a sensor, thus enabling applicability in a variety of miniaturized optical devices, including but not limited to satellites for Earth observation

    Manipulation of room-temperature valley-coherent exciton-polaritons in atomically thin crystals by real and artificial magnetic fields

    Get PDF
    The Würzburg group acknowledges support by the state of Bavaria. C.S. acknowledges support by the European Research Commission (Project unLiMIt-2D). This work has been supported by the Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. F.E gratefully acknowledge the financial support by the German Federal Ministry of Education and Research via the funding “2D Nanomaterialien für die Nanoskopie der Zukunft”. Work of E.S. and A.K. was supported by foundation of Westlake University (Project No. 041020100118 ). E.S. acknowledges partial support from the Grant of the President of the Russian Federation for state support of young Russian scientists No. MK-2839.2019.2. A.K. acknowledges the Saint-Petersburg State University for the research grant ID 40847559. SK.W and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and the CREST (JPMJCR15F3), JST. S.T. acknowledges support by the NSF (DMR-1955668 and DMR-1838443). H.K. is supported via the Max Planck School of Photonics.Strong spin-orbit coupling and inversion symmetry breaking in transition metal dichalcogenide monolayers yield the intriguing effects of valley-dependent optical selection rules. As such, it is possible to substantially polarize valley excitons with chiral light and furthermore create coherent superpositions of K and K’ polarized states. Yet, at ambient conditions dephasing usually becomes too dominant, and valley coherence typically is not observable. Here, we demonstrate that valley coherence is, however, clearly observable for a single monolayer of WSe2, if it is strongly coupled to the optical mode of a high quality factor microcavity. The azimuthal vector, representing the phase of the valley coherent superposition, can be directly manipulated by applying magnetic fields, and furthermore, it sensibly reacts to the polarization anisotropy of the cavity which represents an artificial magnetic field. Our results are in qualitative and quantitative agreement with our model based on pseudospin rate equations, accounting for both effects of real and pseudo-magnetic fields.PostprintPeer reviewe

    Integration of atomically thin layers of transition metal dichalcogenides into high-Q, monolithic Bragg-cavities : an experimental platform for the enhancement of optical interaction in 2D-materials

    Get PDF
    We demonstrate a new approach to integrate single layer MoSe2 and WSe2 flakes into monolithic all-dielectric planar high-quality micro-cavities. These distributed-Bragg-reflector (DBR) cavities may, e.g., be tuned to match the exciton resonance of the 2D-materials. They are highly robust and compatible with cryogenic and room-temperature operation. The integration is achieved by a customized ion-assisted physical vapor deposition technique, which does not degrade the optical properties of the 2D-materials. The monolithic 2D-resonator is shown to have a high Q-factor in excess of 4500. We use photoluminescence (PL) experiments to demonstrate that the coating procedure with a SiO2 coating on a prepared surface does not significantly alter the electrooptical properties of the 2D-materials. Moreover, we observe a resonance induced modification of the PL-spectrum for the DBR embedded flake. Our system thus represents a versatile platform to resonantly enhance and tailor light-matter-interaction in 2D-materials. The gentle processing conditions would also allow the integration of other sensitive materials into these highly resonant structures.Publisher PDFPeer reviewe

    Spatial coherence of room-temperature monolayer WSe2_2 exciton-polaritons in a trap

    Full text link
    The emergence of spatial and temporal coherence of light emitted from solid-state systems is a fundamental phenomenon, rooting in a plethora of microscopic processes. It is intrinsically aligned with the control of light-matter coupling, and canonical for laser oscillation. However, it also emerges in the superradiance of multiple, phase-locked emitters, and more recently, coherence and long-range order have been investigated in bosonic condensates of thermalized light, as well as in exciton-polaritons driven to a ground state via stimulated scattering. Here, we experimentally show that the interaction between photons in a Fabry-Perot microcavity and excitons in an atomically thin WSe2_2 layer is sufficient such that the system enters the hybridized regime of strong light-matter coupling at ambient conditions. Via Michelson interferometry, we capture clear evidence of increased spatial and temporal coherence of the emitted light from the spatially confined system ground-state. The coherence build-up is accompanied by a threshold-like behaviour of the emitted light intensity, which is a fingerprint of a polariton laser effect. Valley-physics is manifested in the presence of an external magnetic field, which allows us to manipulate K and K' polaritons via the Valley-Zeeman-effect. Our findings are of high application relevance, as they confirm the possibility to use atomically thin crystals as simple and versatile components of coherent light-sources, and in valleytronic applications at room temperature.Comment: 13 pages, 4 figure

    Influence of resonant plasmonic nanoparticles on optically accessing the valley degree of freedom in 2D semiconductors

    No full text
    The valley degree of freedom is one of the most intriguing properties of atomically thin transition metal dichalcogenides. Together with the possibility to address this degree of freedom by valley-contrasting optical selection rules, it has the potential to enable a completely new class of future electronic and optoelectronic devices. Resonant optical nanostructures emerge as promising tools for controlling the valley degree of freedom at the nanoscale. However, a critical understanding gap remains in how nanostructures and their nearfields affect the polarization properties of valley-selective chiral emission hindering further developments in this field. In order to address this issue, our study delves into the experimental investigation of a hybrid model system where valley-specific chiral emission from monolayer molybdenum disulfide is interacting with a resonant plasmonic nanosphere. Contrary to the intuition suggesting that a centrosymmetric nanoresonator preserves the degree of circular polarization in the farfield, our cryogenic photoluminescence microscopy reveals almost complete depolarization. We rigorously study the nature of this phenomenon numerically considering the monolayer-nanoparticle interaction at different levels including excitation and emission. We find that the farfield degree of polarization strongly reduces in the hybrid system when including excitons emitting from outside of the system's symmetry point, which in combination with depolarisation at the excitation level causes the observed effect. Our results highlight the importance of considering spatially distributed chiral emitters for precise predictions of polarization responses in these hybrid systems. This finding advances our fundamental knowledge of the light-valley interactions at the nanoscale but also unveils a serious impediment of the practical fabrication of resonant valleytronic nanostructures

    Project DECIDE, part II: decision-making places for people with dementia in Alzheimer’s disease: supporting advance decision-making by improving person-environment fit

    No full text
    Abstract Background The UN Convention on the Rights of Persons with Disabilities, and the reformed guardianship law in Germany, require that persons with a disability, including people with dementia in Alzheimer’s disease (PwAD), are supported in making self-determined decisions. This support is achieved through communication. While content-related communication is a deficit of PwAD, relational aspects of communication are a resource. Research in supported decision-making (SDM) has investigated the effectiveness of different content-related support strategies for PwAD but has only succeeded in improving understanding, which, although one criterion of capacity to consent, is not sufficient to ensure overall capacity to consent. The aim of the ‘spatial intervention study’ of the DECIDE project is to examine an innovative resource-oriented SDM approach that focuses on relational aspects. We hypothesise that talking to PwAD in their familiar home setting (as opposed to a clinical setting) will reduce the complexity of the decision-making process and enhance overall capacity to consent. Methods People with a suspected or confirmed diagnosis of dementia in Alzheimer’s disease will be recruited from two memory clinics (N = 80). We will use a randomised crossover design to investigate the intervention effect of the decision-making place on capacity to consent. Besides reasoning capacity, which is part of overall capacity to consent and will be the primary outcome, various secondary outcomes (e.g., other aspects of capacity to consent, subjective task complexity, decisional conflict) and suspected moderating or mediating variables (e.g., meaning of home, demographic characteristics) will be assessed. Discussion The results of the study will be used to develop a new SDM strategy that is based on relational resources for PwAD. If a change in location achieves the anticipated improvement in capacity to consent, future research should focus on implementing this SDM strategy in a cost-effective manner in clinical practice. Trial registration: DRKS00030799
    corecore