2,390 research outputs found

    Mechatronic design of a fast and long range 4 degrees of freedom humanoid neck

    Get PDF
    This paper describes the mechatronic design of a humanoid neck. To research human machine interaction, the head and neck combination should be able to approach the human behavior as much as possible. We present a novel humanoid neck concept that is both fast, and has a long range of motion in 4 degrees of freedom (DOFs). This enables the head to track fast objects, and the neck design is suitable for mimicking expressions. The humanoid neck features a differential drive design for the lower 2 DOFs resulting in a low moving mass and the ability to use strong actuators. The performance of the neck has been\ud optimized by minimizing backlash in the mechanisms, and by using gravity compensation. Two cameras in the head are used for scanning and interaction with the environment

    A combinatorial smoothness criterion for spherical varieties

    Full text link
    We suggest a combinatorial criterion for the smoothness of an arbitrary spherical variety using the classification of multiplicity-free spaces, generalizing an earlier result of Camus for spherical varieties of type AA.Comment: 14 pages, 2 table

    Hydroxylation of Platinum Surface Oxides Induced by Water Vapor

    Get PDF
    With its high stability and well-tuned binding strength for adsorbates, platinum is an excellent catalyst for a wide range of reactions. In applications like car exhaust purification, the oxidation of hydrocarbons, and fuel cells, platinum is exposed to highly oxidizing conditions, which often leads to the formation of surface oxides. To reveal the structure of these surface oxides, the oxidation of Pt in O2 has been widely studied. However, in most applications, H2O is also an important or even dominant part of the reaction mixture. Here, we investigate the interaction of H2O with Pt surface oxides using near-ambient-pressure X-ray photoelectron spectroscopy. We find that reversible hydroxylation readily occurs in H2O/O2 mixtures. Using time-resolved measurements, we show that O–OH exchange occurs on a time scale of seconds

    Study of Magnetic Excitation in Singlet-Ground-State Magnets CsFeCl3_3 and RbFeCl3_3 by Nuclear Magnetic Relaxation

    Full text link
    The temperature dependences of spin-lattice relaxation time T1T_1 of 133^{133}Cs in CsFeCl3_3 and 87^{87}Rb in RbFeCl3_3 were measured in the temperature range between 1.5 K and 22 K, at various fields up to 7 T applied parallel (or perpendicular) to the c-axis, and the analysis was made on the basis of the DCEFA. The mechanism of the nuclear magnetic relaxation is interpreted in terms of the magnetic fluctuations which are characterized by the singlet ground state system. In the field region where the phase transition occurs, T1−1T_1^{-1} exhibited the tendency of divergence near TNT_{\rm N}, and this feature was ascribed to the transverse spin fluctuation associated with the mode softening at the KK-point. It was found that the damping constant of the soft mode is remarkably affected by the occurrence of the magnetic ordering at lower temperature, and increases largely in the field region where the phase transition occurs.Comment: 12 pages, 18 figures, submitted to J. Phys. Soc. Jp

    In situ surface coverage analysis of RuO<sub>2</sub>-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis

    Get PDF
    In heterogeneous catalysis, rates with Arrhenius-like temperature dependence are ubiquitous. Compensation phenomena, which arise from the linear correlation between the apparent activation energy and the logarithm of the apparent pre-exponential factor, are also common. Here, we study the origin of compensation and find a similar dependence on the rate-limiting surface coverage term for each Arrhenius parameter. This result is derived from an experimental determination of the surface coverage of oxygen and chlorine species using temporal analysis of products and prompt gamma activation analysis during HCl oxidation to Cl2 on a RuO2 catalyst. It is also substantiated by theory. We find that compensation phenomena appear when the effect on the apparent activation energy caused by changes in surface coverage is balanced out by the entropic configuration contributions of the surface. This result sets a new paradigm in understanding the interplay of compensation effects with the kinetics of heterogeneously catalysed processes

    Dark Energy Accretion onto a Black Hole in an Expanding Universe

    Full text link
    By using the solution describing a black hole embedded in the FLRW universe, we obtain the evolving equation of the black hole mass expressed in terms of the cosmological parameters. The evolving equation indicates that in the phantom dark energy universe the black hole mass becomes zero before the Big Rip is reached.Comment: 7 pages, no figures, errors is correcte

    Quantitative adsorbate structure determination under catalytic reaction conditions

    Get PDF
    Current methods allow quantitative local structure determination of adsorbate geometries on surfaces in ultrahigh vacuum (UHV) but are incompatible with the higher pressures required for a steady-state catalytic reactions. Here we show that photoelectron diffraction can be used to determine the structure of the methoxy and formate reaction intermediates during the steady-state oxidation of methanol over Cu(110) by taking advantage of recent instrumental developments to allow near-ambient pressure x-ray photoelectron spectroscopy. The local methoxy site differs from that under static UHV conditions, attributed to the increased surface mobility and dynamic nature of the surface under reaction conditions
    • 

    corecore