1,256 research outputs found
Comprehensive modeling of Joule heated cantilever probes
The thermo-electrical properties of a complex silicon cantilever structure
used in thermal scanning probe lithography are modeled based on well
established empirical laws for the thermal conductivity in silicon, the
electrical conductivity in the degenerate silicon support structure, and a
comprehensive physical model of the electrical conductivity in the low-doped
heater structure. The model calculations are performed using a set of
physically well defined material parameters and finite element methods to solve
the coupled thermal and electrical diffusion equations in the cantilever. The
material parameters are determined from a non-linear regression fit of the
numerical results to corresponding measured data which also includes Raman
measurements of the heater temperature. Excellent agreement between predicted
and measured data in the absence of air cooling is obtained if a tapered doping
profile in the heater is used. The heat loss through the surrounding air is
also studied in a parameter free three-dimensional simulation. The simulation
reveals that the heater temperature can be accurately predicted from the
electrical power supplied to the cantilever via a global scaling of the power
in the power-temperature correlation function which can be determined from the
vacuum simulation.Comment: 24 pages, 10 figure
Off-shell effects on particle production
We investigate the observable effects of off-shell propagation of nucleons in
heavy-ion collisions at SIS energies. Within a semi-classical BUU transport
model we find a strong enhancement of subthreshold particle production when
off-shell nucleons are propagated.Comment: 11 pages, 3 figure
Chemostratigraphy of Neoproterozoic carbonates: implications for 'blind dating'
The delta C-13(carb) and Sr-87/Sr-86 secular variations in Neoproteozoic seawater have been used for the purpose of 'isotope stratigraphy' but there are a number of problems that can preclude its routine use. In particular, it cannot be used with confidence for 'blind dating'. The compilation of isotopic data on carbonate rocks reveals a high level of inconsistency between various carbon isotope age curves constructed for Neoproteozoic seawater, caused by a relatively high frequency of both global and local delta C-13(carb) fluctuations combined with few reliable age determinations. Further complication is caused by the unresolved problem as to whether two or four glaciations, and associated negative delta C-13(carb) excursions, can be reliably documented. Carbon isotope stratigraphy cannot be used alone for geological correlation and 'blind dating'. Strontium isotope stratigraphy is a more reliable and precise tool for stratigraphic correlations and indirect age determinations. Combining strontium and carbon isotope stratigraphy, several discrete ages within the 590-544 Myr interval, and two age-groups at 660-610 and 740-690 Myr can be resolved
Instruments of RT-2 Experiment onboard CORONAS-PHOTON and their test and evaluation II: RT-2/CZT payload
Cadmium Zinc Telluride (CZT) detectors are high sensitivity and high
resolution devices for hard X-ray imaging and spectroscopic studies. The new
series of CZT detector modules (OMS40G256) manufactured by Orbotech Medical
Solutions (OMS), Israel, are used in the RT-2/CZT payload onboard the
CORONAS-PHOTON satellite. The CZT detectors, sensitive in the energy range of
20 keV to 150 keV, are used to image solar flares in hard X-rays. Since these
modules are essentially manufactured for commercial applications, we have
carried out a series of comprehensive tests on these modules so that they can
be confidently used in space-borne systems. These tests lead us to select the
best three pieces of the 'Gold' modules for the RT-2/CZT payload. This paper
presents the characterization of CZT modules and the criteria followed for
selecting the ones for the RT-2/CZT payload. The RT-2/CZT payload carries,
along with three CZT modules, a high spatial resolution CMOS detector for high
resolution imaging of transient X-ray events. Therefore, we discuss the
characterization of the CMOS detector as well.Comment: 26 pages, 19 figures, Accepted for publication in Experimental
  Astronomy (in press
CSNL: A cost-sensitive non-linear decision tree algorithm
This article presents a new decision tree learning algorithm called CSNL that induces Cost-Sensitive Non-Linear decision trees. The algorithm is based on the hypothesis that nonlinear decision nodes provide a better basis than axis-parallel decision nodes and utilizes discriminant analysis to construct nonlinear decision trees that take account of costs of misclassification.
The performance of the algorithm is evaluated by applying it to seventeen datasets and the results are compared with those obtained by two well known cost-sensitive algorithms, ICET and MetaCost, which generate multiple trees to obtain some of the best results to date. The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the datasets and is considerably faster. The use of bagging with CSNL further enhances its performance showing the significant benefits of using nonlinear decision nodes.
The performance of the algorithm is evaluated by applying it to seventeen data sets and  the results are 
compared with those obtained by two well known  cost-sensitive algorithms, ICET and  MetaCost, which generate multiple trees to obtain some of the best results to date.
The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the data sets and  is considerably faster.  
The use of bagging with CSNL further enhances its performance showing the significant benefits of using non-linear decision nodes
Inducing safer oblique trees without costs
Decision tree induction has been widely studied and applied. In safety applications, such as determining whether a chemical process is safe or whether a person has a medical condition, the cost of misclassification in one of the classes is significantly higher than in the other class. Several authors have tackled this problem by developing cost-sensitive decision tree learning algorithms or have suggested ways of changing the
distribution of training examples to bias the decision tree learning process so as to take account of costs. A prerequisite for applying such algorithms is the availability of costs of misclassification.
Although this may be possible for some applications, obtaining reasonable estimates of costs of misclassification is not easy in the area of safety.
This paper presents a new algorithm for applications where the cost of misclassifications cannot be quantified, although the cost of misclassification in one class is known to be significantly higher than in another class. The algorithm utilizes linear discriminant analysis to identify oblique relationships between continuous attributes and then carries out an appropriate modification to ensure that the resulting tree errs on the side of safety. The algorithm is evaluated with respect to one of the best known cost-sensitive algorithms (ICET), a well-known oblique decision tree algorithm (OC1) and an algorithm that utilizes robust linear programming
A survey of cost-sensitive decision tree induction algorithms
The past decade has seen a significant interest on the problem of inducing decision trees that take account of costs of misclassification and costs of acquiring the features used for decision making.  This survey identifies over 50 algorithms including approaches that are direct adaptations of accuracy based methods, use genetic algorithms, use anytime methods and utilize boosting and bagging.  The survey brings together these different studies and novel approaches to cost-sensitive decision tree learning, provides a useful taxonomy, a historical timeline of how the field has developed and should provide a useful reference point for future research in this field
Clocking hadronization in relativistic heavy ion collisions with balance functions
A novel state of matter has been hypothesized to exist during the early stage
of relativistic heavy ion collisions, with normal hadrons not appearing until
several fm/c after the start of the reaction. To test this hypothesis,
correlations between charges and their associated anticharges are evaluated
with the use of balance functions. It is shown that late-stage hadronization is
characterized by tightly correlated charge/anticharge pairs when measured as a
function of relative rapidity.Comment: 5 pages, 3 figure
Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling
A planar slab of negative index material works as a superlens with
sub-diffraction-limited imaging resolution, since propagating waves are focused
and, moreover, evanescent waves are reconstructed in the image plane. Here, we
demonstrate a superlens for electric evanescent fields with low losses using
perovskites in the mid-infrared regime. The combination of near-field
microscopy with a tunable free-electron laser allows us to address precisely
the polariton modes, which are critical for super-resolution imaging. We
spectrally study the lateral and vertical distributions of evanescent waves
around the image plane of such a lens, and achieve imaging resolution of
wavelength/14 at the superlensing wavelength. Interestingly, at certain
distances between the probe and sample surface, we observe a maximum of these
evanescent fields. Comparisons with numerical simulations indicate that this
maximum originates from an enhanced coupling between probe and object, which
might be applicable for multifunctional circuits, infrared spectroscopy, and
thermal sensors.Comment: 20 pages, 6 figures, published as open access article in Nature
  Communications (see http://www.nature.com/ncomms/
Flexographic printing of ultra-thin semiconductor polymer layers
Methods of fabricating and controlling organic light emitting diode (OLED) or photovoltaic layers effectively are paramount for achieving a functional and durable device. The deposited film needs to be uniform and homogeneous to avoid non-uniform luminescence in the OLED. Although methods of depositing the ultra-thin sub 100 nm layers within OLED are effective, they are relatively slow and expensive. This paper therefore demonstrates flexography as an alternative method for depositing the semiconductor layer for OLED onto glass substrate. In this case a proprietary semiconducting polyflourine dispersed in xylene was used. This material functions as the hole injecting layer. The low polymer concentration and requirement for aromatic solvent presented challenges for the process; conventional photopolymer printing plates degraded rapidly on contact with xylene and rubber printing plates were found to be sufficiently resilient. Through optimisation of printing parameters and surface modification of both the printing plate and substrate with UV/ozone exposure, a consistent sub-100 nm film was achieved. Flexographic printing will enable a substantial reduction in layer fabrication time, as well as allowing roll to roll mass production at lower cost. The research indicated within this paper will aid the progression of flexography as a viable cost effective method for OLED or display technology application through continuous printing of ultra-thin layers
- …
