31 research outputs found

    Sterols as dietary markers for Drosophila melanogaster

    No full text
    During cold acclimation fruit flies switch their feeding from yeast to plant food, however there are no robust markers to monitor it in the wild. Drosophila melanogaster is a sterol auxotroph and relies on dietary sterols to produce lipid membranes, lipoproteins and molting hormones. We employed shotgun lipidomics to quantify eight major food sterols in total lipid extracts of heads, female and male genital tracts of adult flies. We found that their sterol composition is dynamic and reflective of fly diet in an organ-specific manner. Season-dependent changes observed in the organs of wild-living flies suggested that the molar ratio between yeast (ergosterol, zymosterol) and plant (sitosterol, stigmasterol) sterols is a quantifiable, generic and unequivocal marker of their feeding behavior, including cold acclimation. It provides technically simpler and more specific readout compared to the full lipidome analysis and is suitable for ecological and environmental population-based studies

    Sterols as dietary markers for Drosophila melanogaster

    No full text
    During cold acclimation fruit flies switch their feeding from yeast to plant food, however there are no robust markers to monitor it in the wild. Drosophila melanogaster is a sterol auxotroph and relies on dietary sterols to produce lipid membranes, lipoproteins and molting hormones. We employed shotgun lipidomics to quantify eight major food sterols in total lipid extracts of heads, female and male genital tracts of adult flies. We found that their sterol composition is dynamic and reflective of fly diet in an organ-specific manner. Season-dependent changes observed in the organs of wild-living flies suggested that the molar ratio between yeast (ergosterol, zymosterol) and plant (sitosterol, stigmasterol) sterols is a quantifiable, generic and unequivocal marker of their feeding behavior, including cold acclimation. It provides technically simpler and more specific readout compared to the full lipidome analysis and is suitable for ecological and environmental population-based studies

    Sterols as dietary markers for Drosophila melanogaster

    No full text
    During cold acclimation fruit flies switch their feeding from yeast to plant food, however there are no robust markers to monitor it in the wild. Drosophila melanogaster is a sterol auxotroph and relies on dietary sterols to produce lipid membranes, lipoproteins and molting hormones. We employed shotgun lipidomics to quantify eight major food sterols in total lipid extracts of heads, female and male genital tracts of adult flies. We found that their sterol composition is dynamic and reflective of fly diet in an organ-specific manner. Season-dependent changes observed in the organs of wild-living flies suggested that the molar ratio between yeast (ergosterol, zymosterol) and plant (sitosterol, stigmasterol) sterols is a quantifiable, generic and unequivocal marker of their feeding behavior, including cold acclimation. It provides technically simpler and more specific readout compared to the full lipidome analysis and is suitable for ecological and environmental population-based studies

    A Temperature-Dependent Switch in Feeding Preference Improves Drosophila Development and Survival in the Cold

    No full text
    How cold-blooded animals acclimate to temperature and what determines the limits of their viable temperaturerange are not understood. Here, we show that Drosophila alter their dietary preference from yeast to plants when temperatures drop below 15°C and that the different lipids present in plants improve survival at low temperatures. We show that Drosophila require dietary unsaturated fatty acids present in plants to adjust membrane fluidity and maintain motor coordination. Feeding on plants extends lifespan and survival for many months at temperatures consistent with overwintering in temperate climates. Thus, physiological alterations caused by a temperature-dependent dietary shift could help Drosophila survive seasonal temperature changes.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Analytical challenges in human plasma lipidomics: A winding path towards the truth

    No full text
    Human plasma lipidome has been extensively studied in many pathophysiological contexts with the hope of identifying biomarkers for early diagnostics and monitoring the progression and treatment of a broad spectrum of diseases. However, despite remarkable progress in lipidomics technologies, the concordance of lipidomics measurements between independent laboratories remains limited and not fulfilling the criteria of common laboratory diagnostics. Here we highlighted a few critical aspects of epidemiological studies of the plasma lipidome, including the selection of study cohorts, collection of plasma samples as well as extraction, identification and quantification of lipids. We argue that reporting the abundances of plasma lipids as molar concentrations is a key turning point during the transition of research lipidomics into a common tool of clinical diagnostics

    How to use the development of individual Drosophila larvae as a metabolic sensor.

    No full text
    Metabolic research is a challenge because of the variety of data within experimental series and the difficulty of replicating results among scientific groups. The fruit fly, Drosophila melanogaster, is a cost-effective and reliable pioneer model to screen dietary variables for metabolic research. One of the main reasons for problems in this field are differences in food recipes, diet-associated microbial environments and the pharmacokinetic behavior of nutrients across the gut-blood barrier. To prevent such experimental shortcomings, a common strategy is to pool scores of subjects into one sample to create an average statement. However, this approach lacks information about the biological spread and may provoke misleading interpretations. We propose to use the developmental rate of individual Drosophila larvae as a metabolic sensor. To do so, we introduce here a 96-well plate-based assay, which allows screening for multiple variables including food quality, microbial load, and genetic differences. We demonstrate that on a diet that is rich in calories, pupation is sensitive to the variation of dietary lipid compounds and that genotypes considered as wild-types/controls produce different developmental profiles. Our platform is suited for later automation and represents a potent high-throughput screening tool for the pharmacology and food industry. If used systematically, our assay could become a powerful reference tool to compare the quality of used dietary configurations with published benchmark recipes

    Shotgun Lipidomics Combined with Laser Capture Microdissection: A Tool To Analyze Histological Zones in Cryosections of Tissues.

    No full text
    Shotgun analysis provides a quantitative snapshot of the lipidome composition of cells, tissues, or model organisms; however, it does not elucidate the spatial distribution of lipids. Here we demonstrate that shotgun analysis could quantify low-picomole amounts of lipids isolated by laser capture microdissection (LCM) of hundred micrometer-sized histological zones visualized at the cryosections of tissues. We identified metabolically distinct periportal (pp) and pericentral (pc) zones by immunostaining of 20 μm thick cryosections of a healthy mouse liver. LCM was used to ablate, catapult, and collect the tissue material from 10 to 20 individual zones covering a total area of 0.3-0.5 mm2 and containing ca. 500 cells. Top-down shotgun profiling relying upon computational stitching of 61 targeted selective ion monitoring ( t-SIM) spectra quantified more than 200 lipid species from 17 lipid classes including glycero- and glycerophospholipids, sphingolipids, cholesterol esters, and cholesterol. Shotgun LCM revealed the overall commonality of the full lipidome composition of pp and pc zones along with significant ( p < 0.001) difference in the relative abundance of 13 lipid species. Follow-up proteomics analyses of pellets recovered from an aqueous phase saved after the lipid extraction identified 13 known and 7 new protein markers exclusively present in pp or in pc zones and independently validated the specificity of their visualization, isolation, and histological assignment

    Sterols as dietary markers for Drosophila melanogaster.

    No full text
    During cold acclimation fruit flies switch their feeding from yeast to plant food, however there are no robust molecular markers to monitor this in the wild. Drosophila melanogaster is a sterol auxotroph and relies on dietary sterols to produce lipid membranes, lipoproteins and molting hormones. We employed shotgun lipidomics to quantify eight major food sterols in total lipid extracts of heads and genital tracts of adult male and female flies. We found that their sterol composition is dynamic and reflective of fly diet in an organ-specific manner. Season-dependent changes observed in the organs of wild-living flies suggested that the molar ratio between yeast (ergosterol, zymosterol) and plant (sitosterol, stigmasterol) sterols is a quantifiable, generic and unequivocal marker of their feeding behavior suitable for ecological and environmental population-based studies. The enrichment of phytosterols over yeast sterols in wild-living flies at low temperatures is consistent with switching from yeast to plant diet and corroborates the concomitantly increased unsaturation of their membrane lipids

    Body size-dependent energy storage causes Kleiber's law scaling of the metabolic rate in planarians

    No full text
    Kleiber's law, or the 3/4-power law scaling of the metabolic rate with body mass, is considered one of the few quantitative laws in biology, yet its physiological basis remains unknown. Here, we report Kleiber's law scaling in the planarian Schmidtea mediterranea. Its reversible and life history-independent changes in adult body mass over 3 orders of magnitude reveal that Kleiber's law does not emerge from the size-dependent decrease in cellular metabolic rate, but from a size-dependent increase in mass per cell. Through a combination of experiment and theoretical analysis of the organismal energy balance, we further show that the mass allometry is caused by body size dependent energy storage. Our results reveal the physiological origins of Kleiber's law in planarians and have general implications for understanding a fundamental scaling law in biology

    A Temperature-Dependent Switch in Feeding Preference Improves Drosophila Development and Survival in the Cold

    No full text
    How cold-blooded animals acclimate to temperature and what determines the limits of their viable temperature range are not understood. Here, we show that Drosophila alter their dietary preference from yeast to plants when temperatures drop below 15 degrees C and that the different lipids present in plants improve survival at low temperatures. We show that Drosophila require dietary unsaturated fatty acids present in plants to adjust membrane fluidity and maintain motor coordination. Feeding on plants extends lifespan and survival for many months at temperatures consistent with overwintering in temperate climates. Thus, physiological alterations caused by a temperature-dependent dietary shift could help Drosophila survive seasonal temperature changes
    corecore