309 research outputs found

    Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    Get PDF
    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS)

    Secondary aerosol formation from atmospheric reactions of aliphatic amines

    Get PDF
    Although aliphatic amines have been detected in both urban and rural atmospheric aerosols, little is known about the chemistry leading to particle formation or the potential aerosol yields from reactions of gas-phase amines. We present here the first systematic study of aerosol formation from the atmospheric reactions of amines. Based on laboratory chamber experiments and theoretical calculations, we evaluate aerosol formation from reaction of OH, ozone, and nitric acid with trimethylamine, methylamine, triethylamine, diethylamine, ethylamine, and ethanolamine. Entropies of formation for alkylammonium nitrate salts are estimated by molecular dynamics calculations enabling us to estimate equilibrium constants for the reactions of amines with nitric acid. Though subject to significant uncertainty, the calculated dissociation equilibrium constant for diethylammonium nitrate is found to be sufficiently small to allow for its atmospheric formation, even in the presence of ammonia which competes for available nitric acid. Experimental chamber studies indicate that the dissociation equilibrium constant for triethylammonium nitrate is of the same order of magnitude as that for ammonium nitrate. All amines studied form aerosol when photooxidized in the presence of NOx with the majority of the aerosol mass present at the peak of aerosol growth consisting of aminium (R3NH+) nitrate salts, which repartition back to the gas phase as the parent amine is consumed. Only the two tertiary amines studied, trimethylamine and triethylamine, are found to form significant non-salt organic aerosol when oxidized by OH or ozone; calculated organic mass yields for the experiments conducted are similar for ozonolysis (15% and 5% respectively) and photooxidation (23% and 8% respectively). The non-salt organic aerosol formed appears to be more stable than the nitrate salts and does not quickly repartition back to the gas phase

    Nitrogen deposition to the United States: distribution, sources, and processes

    Get PDF
    We simulate nitrogen deposition over the US in 2006–2008 by using the GEOS-Chem global chemical transport model at 1/2°×2/3° horizontal resolution over North America and adjacent oceans. US emissions of NO<sub>x</sub> and NH<sub>3</sub> in the model are 6.7 and 2.9 Tg N a<sup>−1</sup> respectively, including a 20% natural contribution for each. Ammonia emissions are a factor of 3 lower in winter than summer, providing a good match to US network observations of NH<sub>x</sub> (≡NH<sub>3</sub> gas + ammonium aerosol) and ammonium wet deposition fluxes. Model comparisons to observed deposition fluxes and surface air concentrations of oxidized nitrogen species (NO<sub>y</sub>) show overall good agreement but excessive wintertime HNO<sub>3</sub> production over the US Midwest and Northeast. This suggests a model overestimate N<sub>2</sub>O<sub>5</sub> hydrolysis in aerosols, and a possible factor is inhibition by aerosol nitrate. Model results indicate a total nitrogen deposition flux of 6.5 Tg N a<sup>−1</sup> over the contiguous US, including 4.2 as NO<sub>y</sub> and 2.3 as NH<sub>x</sub>. Domestic anthropogenic, foreign anthropogenic, and natural sources contribute respectively 78%, 6%, and 16% of total nitrogen deposition over the contiguous US in the model. The domestic anthropogenic contribution generally exceeds 70% in the east and in populated areas of the west, and is typically 50–70% in remote areas of the west. Total nitrogen deposition in the model exceeds 10 kg N ha<sup>−1</sup> a<sup>−1</sup> over 35% of the contiguous US

    Investigating the influences of SO2 and NH3 levels on isoprene-derived secondary organic aerosol formation using conditional sampling approaches

    Get PDF
    Filter-based PM2.5 samples were chemically analyzed to investigate secondary organic aerosol (SOA) formation from isoprene in a rural atmosphere of the southeastern US influenced by both anthropogenic sulfur dioxide (SO2) and ammonia (NH3) emissions. Daytime PM2.5 samples were collected during summer 2010 using conditional sampling approaches based on pre-defined high and low SO2 or NH3 thresholds. Known molecular-level tracers for isoprene SOA formation, including 2-methylglyceric acid, 3-methyltetrahydrofuran-3,4-diols, 2-methyltetrols, C5-alkene triols, dimers, and organosulfate derivatives, were identified and quantified by gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) and ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS). Mass concentrations of six isoprene low-NOx SOA tracers contributed to 12–19% of total organic matter (OM) in PM2.5 samples collected during the sampling period, indicating the importance of the hydroxyl radical (OH)-initiated oxidation (so-called photooxidation) of isoprene under low-NOx conditions that lead to SOA formation through reactive uptake of gaseous isoprene epoxydiols (IEPOX) in this region. The contribution of the IEPOX-derived SOA tracers to total organic matter was enhanced by 1.4% (p = 0.012) under high-SO2 sampling scenarios, although only weak associations between aerosol acidity and mass of IEPOX SOA tracers were observed. This suggests that IEPOX-derived SOA formation might be modulated by other factors simultaneously, rather than only aerosol acidity. No clear associations between isoprene SOA formation and high or low NH3 conditional samples were found. Positive correlations between sulfate aerosol loadings and IEPOX-derived SOA tracers for samples collected under all conditions indicates that sulfate aerosol could be a surrogate for surface accommodation in the uptake of IEPOX onto preexisting aerosols

    Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia

    Get PDF
    Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM<sub>2.5</sub>) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011–2012. Intercomparison of two collocated ACSMs resulted in strong correlations (<i>r</i><sup>2</sup> > 0.8) for all chemical species, except chloride (<i>r</i><sup>2</sup> = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (<i>r</i><sup>2</sup> > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (<i>r</i><sup>2</sup> = 0.55) in summer. Correlations of the ACSM NR-PM<sub>1</sub> (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM<sub>2.5</sub> and Federal Reference Method (FRM) PM<sub>1</sub> mass are strong with <i>r</i><sup>2</sup> > 0.7 and <i>r</i><sup>2</sup> > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine

    Immunological Outcomes of Allergen-Specific Immunotherapy in Food Allergy

    Get PDF
    IgE-mediated food allergies are caused by adverse immunologic responses to food proteins. Allergic reactions may present locally in different tissues such as skin, gastrointestinal and respiratory tract and may result is systemic life-threatening reactions. During the last decades, the prevalence of food allergies has significantly increased throughout the world, and considerable efforts have been made to develop curative therapies. Food allergen immunotherapy is a promising therapeutic approach for food allergies that is based on the administration of increasing doses of culprit food extracts, or purified, and sometime modified food allergens. Different routes of administration for food allergen immunotherapy including oral, sublingual, epicutaneous and subcutaneous regimens are being evaluated. Although a wealth of data from clinical food allergen immunotherapy trials has been obtained, a lack of consistency in assessed clinical and immunological outcome measures presents a major hurdle for evaluating these new treatments. Coordinated efforts are needed to establish standardized outcome measures to be applied in food allergy immunotherapy studies, allowing for better harmonization of data and setting the standards for the future research. Several immunological parameters have been measured in food allergen immunotherapy, including allergen-specific immunoglobulin levels, basophil activation, cytokines, and other soluble biomarkers, T cell and B cell responses and skin prick tests. In this review we discuss different immunological parameters and assess their applicability as potential outcome measures for food allergen immunotherapy that may be included in such a standardized set of outcome measures

    Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia

    Get PDF
    Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011–2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine

    Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds

    Get PDF
    Isoprene epoxydiols (IEPOX), formed from the photooxidation of isoprene under low-NOx conditions, have recently been proposed as precursors of secondary organic aerosol (SOA) on the basis of mass spectrometric evidence. In the present study, IEPOX isomers were synthesized in high purity (> 99%) to investigate their potential to form SOA via reactive uptake in a series of controlled dark chamber studies followed by reaction product analyses. IEPOX-derived SOA was substantially observed only in the presence of acidic aerosols, with conservative lower-bound yields of 4.7–6.4% for β-IEPOX and 3.4–5.5% for δ-IEPOX, providing direct evidence for IEPOX isomers as precursors to isoprene SOA. These chamber studies demonstrate that IEPOX uptake explains the formation of known isoprene SOA tracers found in ambient aerosols, including 2-methyltetrols, C5-alkene triols, dimers, and IEPOX-derived organosulfates. Additionally, we show reactive uptake on the acidified sulfate aerosols supports a previously unreported acid-catalyzed intramolecular rearrangement of IEPOX to cis- and trans-3-methyltetrahydrofuran-3,4-diols (3-MeTHF-3,4-diols) in the particle phase. Analysis of these novel tracer compounds by aerosol mass spectrometry (AMS) suggests that they contribute to a unique factor resolved from positive matrix factorization (PMF) of AMS organic aerosol spectra collected from low-NOx, isoprene-dominated regions influenced by the presence of acidic aerosols

    Circulating soluble Fas levels and risk of ovarian cancer

    Get PDF
    BACKGROUND: Dysregulation of apoptosis, specifically overexpression of soluble Fas (sFas), has been proposed to play a role in the development of ovarian cancer. The main objective of the present study was to evaluate serum sFas as a potential biomarker of ovarian cancer risk. METHODS: The association between serum sFas levels and the risk of ovarian cancer was examined in a case-control study nested within three prospective cohorts in New York (USA), Umeå (Sweden), and Milan (Italy). Case subjects were 138 women with primary invasive epithelial ovarian cancer diagnosed between 2 months and 13.2 years after the initial blood donation. Control subjects were 263 women who were free of cancer, and matched the case on cohort, menopausal status, age, and enrollment date. Serum sFas levels were determined using a quantitative sandwich enzyme immunoassay. RESULTS: Serum sFas levels were similar in women subsequently diagnosed with ovarian cancer (median, 6.5 ng/mL; range, 4.4 – 10.2) and in controls (median, 6.8 ng/mL; range, 4.5 – 10.1). Statistically significant trends of increasing serum sFas with age were observed among cases (r = 0.39, p < 0.0001) and controls (r = 0.42, p < 0.0001). Compared to women in the lowest third, women in the highest third of serum sFas were not at increased risk of ovarian cancer after adjustment for potential confounders (odd ratio (OR), 0.87; 95% confidence interval (CI), 0.42 – 1.82). CONCLUSION: The results suggest that serum sFas may not be a suitable marker for identification of women at increased risk of ovarian cancer
    corecore