66 research outputs found

    Transient Reversal of Episome Silencing Precedes VP16-Dependent Transcription during Reactivation of Latent HSV-1 in Neurons

    Get PDF
    Herpes simplex virus type-1 (HSV-1) establishes latency in peripheral neurons, creating a permanent source of recurrent infections. The latent genome is assembled into chromatin and lytic cycle genes are silenced. Processes that orchestrate reentry into productive replication (reactivation) remain poorly understood. We have used latently infected cultures of primary superior cervical ganglion (SCG) sympathetic neurons to profile viral gene expression following a defined reactivation stimulus. Lytic genes are transcribed in two distinct phases, differing in their reliance on protein synthesis, viral DNA replication and the essential initiator protein VP16. The first phase does not require viral proteins and has the appearance of a transient, widespread de-repression of the previously silent lytic genes. This allows synthesis of viral regulatory proteins including VP16, which accumulate in the cytoplasm of the host neuron. During the second phase, VP16 and its cellular cofactor HCF-1, which is also predominantly cytoplasmic, concentrate in the nucleus where they assemble an activator complex on viral promoters. The transactivation function supplied by VP16 promotes increased viral lytic gene transcription leading to the onset of genome amplification and the production of infectious viral particles. Thus regulated localization of de novo synthesized VP16 is likely to be a critical determinant of HSV-1 reactivation in sympathetic neurons

    Vendor-based restrictions on pesticide sales to prevent pesticide self-poisoning - a pilot study

    Get PDF
    Abstract Background In South Asia, up to 20% of people ingesting pesticides for self-poisoning purchase the pesticide from a shop with the sole intention of self-harm. Individuals who are intoxicated with alcohol and/or non-farmers represent 72% of such high-risk individuals. We aimed to test the feasibility and acceptability of vendor-based restrictions on pesticide sales for such high-risk individuals. Methods We conducted a pilot study in 14 (rural = 7, urban = 7) pesticide shops in Anuradhapura District of Sri Lanka. A two-hour training program was delivered to 28 pesticide vendors; the aim of the training was to help vendors recognize and respond to customers at high risk of pesticide self-poisoning. Knowledge and attitudes of vendors towards preventing access to pesticides for self-poisoning at baseline and in a three month follow-up was evaluated by questionnaire. Vendors were interviewed to explore the practice skills taught in the training and their assessment of the program. Results The scores of knowledge and attitudes of the vendors significantly increased by 23% (95% CI 15%–32%, p < 0.001) and by 16% (95% CI 9%–23%, p < 0.001) respectively in the follow-up. Fifteen (60%) vendors reported refusing sell pesticides to a high-risk person (non-farmer or intoxicated person) in the follow-up compared to three (12%) at baseline. Vendors reported that they were aware from community feedback that they had prevented at least seven suicide attempts. On four identified occasions, vendors in urban shops had been unable to recognize the self-harming intention of customers who then ingested the pesticide. Only 2 (8%) vendors were dissatisfied with the training and 23 (92%) said they would recommend it to other vendors. Conclusions Our study suggests that vendor-based sales restriction in regions with high rates of self-poisoning has the potential to reduce access to pesticides for self-poisoning. A large-scale study of the effectiveness and sustainability of this approach is needed

    Enhancing the performance for palladium catalysed tert-butyl hydroperoxide-mediated Wacker-type oxidation of alkenes

    No full text
    This work examines the palladium(ii) catalysed oxidation of terminal alkenes to their corresponding methyl ketones using tert-butyl hydroperoxide (TBHP) as the oxidant. The study aimed to reduce catalyst loadings and to understand some of the factors which are important in the design of more effective methods. A series of ligands based around 2-(2-pyridyl)benzoxazole (PBO) were studied and a new dicationic catalyst was developed which can operate more efficiently than previously reported catalysts. The choice of solvent system was also found to have a significant impact on catalyst performance. In the case of oct-1-en-3-yl acetate, a model substrate for a challenging class of substrates (protected allylic alcohols), it was found that using 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), as part of a solvent mixture, greatly improved the reaction; enabling shorter reaction times and lower catalyst loadings
    • …
    corecore