6,022 research outputs found

    Isospectral deformations of the Dirac operator

    Full text link
    We give more details about an integrable system in which the Dirac operator D=d+d^* on a finite simple graph G or Riemannian manifold M is deformed using a Hamiltonian system D'=[B,h(D)] with B=d-d^* + i b. The deformed operator D(t) = d(t) + b(t) + d(t)^* defines a new exterior derivative d(t) and a new Dirac operator C(t) = d(t) + d(t)^* and Laplacian M(t) = d(t) d(t)^* + d(t)* d(t) and so a new distance on G or a new metric on M.Comment: 32 pages, 8 figure

    On quadratic orbital networks

    Full text link
    These are some informal remarks on quadratic orbital networks over finite fields. We discuss connectivity, Euler characteristic, number of cliques, planarity, diameter and inductive dimension. We find a non-trivial disconnected graph for d=3. We prove that for d=1 generators, the Euler characteristic is always non-negative and for d=2 and large enough p the Euler characteristic is negative. While for d=1, all networks are planar, we suspect that for d larger or equal to 2 and large enough prime p, all networks are non-planar. As a consequence on bounds for the number of complete sub graphs of a fixed dimension, the inductive dimension of all these networks goes 1 as p goes to infinity.Comment: 13 figures 15 page

    Bounds for Approximation in Total Variation Distance by Quantum Circuits

    Get PDF
    It was recently shown that for reasonable notions of approximation of states and functions by quantum circuits, almost all states and functions are exponentially hard to approximate [Knill 1995]. The bounds obtained are asymptotically tight except for the one based on total variation distance (TVD). TVD is the most relevant metric for the performance of a quantum circuit. In this paper we obtain asymptotically tight bounds for TVD. We show that in a natural sense, almost all states are hard to approximate to within a TVD of 2/e-\epsilon even for exponentially small \epsilon. The quantity 2/e is asymptotically the average distance to the uniform distribution. Almost all states with probability amplitudes concentrated in a small fraction of the space are hard to approximate to within a TVD of 2-\epsilon. These results imply that non-uniform quantum circuit complexity is non-trivial in any reasonable model. They also reinforce the notion that the relative information distance between states (which is based on the difficulty of transforming one state to another) fully reflects the dimensionality of the space of qubits, not the number of qubits.Comment: uuencoded compressed postscript, LACES 68Q-95-3
    corecore