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Abstract

It was recently shown that for reasonable notions of approximation

of states and functions by quantum circuits, almost all states and func-

tions are exponentially hard to approximate [5]. The bounds obtained are

asymptotically tight except for the one based on total variation distance

(TVD) . TVD is the most relevant metric for the performance of a quantum

circuit. In this paper we obtain asymptotically tight bounds for TVD. We

show that in a natural sense, almost all states are hard to approximate to

within a TVD of 2=e� � even for exponentially small �. The quantity 2=e

is asymptotically the average distance to the uniform distribution. Almost

all states with probability amplitudes concentrated in a small fraction of

the space are hard to approximate to within a TVD of 2 � �. These re-

sults imply that non-uniform quantum circuit complexity is non-trivial in

any reasonable model. They also reinforce the notion that the relative

information distance between states (which is based on the di�culty of

transforming one state to another) fully re
ects the dimensionality of the

space of qubits, not the number of qubits.

1 Introduction

Given two probability distributions � and � on a �nite event space, the total

varation distance (TVD) between � and � is de�ned by j� � �j1 =
P

x j�(x)�
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�(x)j. The TVD on an event space with n elements is equivalent to the L1

metric on

�(n) = fx 2 R
n j x � 0; x � 1 = 1g;

where R is the set of real numbers, the expression x � 0 means that each

coordinate xi of x satis�es xi � 0, y � z is the inner product of y and z, and 0

(1) is the vector with all entries 0 (1).

Our interest in the TVD comes from the theory of quantum circuits.

The domain Hn of computation of a quantum circuit is an n-fold tensor product

of qubits Q, Hn = Q
n. A qubit Q is the two dimensional complex Hilbert

space generated by the basis vectors j0i and j1i. The standard basis of Hn

consists of elements of the form jb1ijb2i : : : jbni which we abbreviate jb1b2 : : : bni
or jbi if b 2 2[n] is an n-bit vector or a number written in binary (in reverse

order). A quantum circuit applies a unitary operation to Hn by composing a

number of primitive unitary operations called quantum gates . A quantum gate

with g inputs is a unitary operator V on Hg. The speci�cation of the circuit

describes which g qubits each gate should act on. The gate's action is obtained

by identifying Hn with Hg 
Hn�g , where Hg is the factor corresponding to the

g input qubits. The gate acts as V 
 I on Hg 
 Hn�g , where I is the identity

matrix. The complexity of the quantum circuit is the number of gates applied.

An important property is that all unitary operations are exactly representable

as compositions of 2-qubit gates [4]. See [8, 7, 2] for more detailed descriptions

and motivations.

The output of a quantum circuit is a state in Hn. The knowledge that

can be gained from a state is restricted to what can be learned by measuring

it. A measurement on the �rst m bits of a state jxi induces a probability

distribution on m-bit vectors de�ned by

Probm(b j jxi) =
X
b0

jhbb0jxij2

for b 2 2[m]. The goal of a computation is to transform an input state jbi to some

output state jx(b)i whose induced distribution Probm(� j jx(b)i) is su�ciently

close to a desired one. Since we are comparing probability distributions, the

TVD is the most appropriate distance measure to use for evaluating the success

of the computation.

It is shown in [5] that even if j0i is the only input of interest, almost

no distribution on 2[m] can be approximated within a TVD of 1
2
� � unless the
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number of gates in the circuit is exponentially large in m. The notion of \al-

most no distribution" is derived from the induced Lebesgue measure on �(2m).

This result is suboptimal in two ways. First one can compute the minimum

expected distance of x 2 �(n) from a �xed point in �(n) as 2
e
�o(1) > 1

2
. Thus

the situation where a small number of gates can approximate a distribution to

better than average is not excluded. Second, most computationally interesting

distributions are highly concentrated. Such distributions are on average within

a TVD 2 � o(1) of other distributions. Finding an approximation within dis-

tance 1 (say) might already be good. For approximating functions with large

domains, the results for classical approximation problems in [5] show that even

weak approximation is di�cult. However, for small domains, the worst-case

complexity of approximating highly concentrated distributions to within 2 � �

total variation distance was left open. In this paper we resolve both of these

issues by showing that the number of gates must be nearly exponential for any

non-trivial approximation to be achieved for a non-negligible fraction of possible

input-output relationships.

Our proofs are based on the same arguments as those given in [5], and

use lemmas given there. The new results in this paper are obtained by making

use of a large deviation argument to show that random elements of �(n) have

certain properties with respect to the TVD.

2 Main results

We begin with some de�nitions.

For N 0 < N , there are
�N
N 0

�
ways of embedding �(N 0) in �(N). For

an N 0 tuple S � [n], let �(S;N) be the face of �(N) consisting of the vectors

x which satisfy that xi > 0 i� i 2 S. Let �(N 0; N) =
S
S:S=N 0 �(S;N). Note

that �(N;N) = �(N) and for N 0 � N 00, �(N 0; N) � �(N 00; N).

Let �(N 0; N)k be the set of k-tuples of members of �(N 0; N). We

endow �(N 0; N)k with the measure � obtained by normalizing the Lebesgue

measure so that �(�(N 0; N)k) = 1. This is the natural uniform distribution

on �(N 0; N)k. The Lebesgue measure is denoted by �. In general we will use

� to denote the uniform distribution and � the induced Lebesgue measure on

the polytope of interest. If necessary, we will subscript � by the polytope being

considered. When using probabilistic concepts de�ned on a polytope, we always

mean the uniform distribution.
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We extend the TVD to �(N)k by

jx� yj1 = 1

k

X
jxi � yij1;

which is the average TVD of the components. Here xi denotes the i'th member

of the k-tuple of elements x of �(N)k.

A unitary operator U acting on Hn induces a map which takes the

�rst k basis elements j0i; : : : ; jk� 1i to the k-tuple of probability distributions

Probm(� j U j0i); : : : ;Probm(� j U jk � 1i) in �(2m)k. Denote this k-tuple by

�m(U).

Let G
(b;n)
g be the set of unitary operators on n qubits expressible as

a composition of at most b g-input quantum gates. Let X(b; g;m;n;N; d; k)

consist of the members of �(N; 2m)k which are within average TVD d of an

element of �m(G
(b;n)
g ). The number of inputs g is assumed to be constant in the

discussions below.

Note that for the purpose of bounding X(b; g;m;n;N; d; k) from above

we can assume that b � (n�m)=g. Otherwise some input qubits which do not

participate in the �nal measurement are involved in the computation and may

be eliminated. To avoid other trivial cases we assume that b � n > m � 1,

N � 2 and k � 1.

Theorem 2.1 There exist constants ci > 0 such that for 0 < � � 2,

ln(��(2m)k(X(b; g;m;n; 2m; 2=e� �; k))) � 2c1gb ln(2b=�) + c2mk � c3�
22mk:

Lemma 3.1 shows that 2=e� o(1) is the average distance of y 2 �(2m)

to the uniform distribution 1=2m.

The proof of the theorem can be used to �nd explicit values of the

constants1. We do not make any attempts to optimize the inequalities in this

paper.

Corollary 2.2 For 0 < � < 1, almost all k-tuples of states require 2�m(1�o(1))

g-input gates for approximation by a quantum circuit on the �rst m qubits to

within a TVD of 2=e� 2�(1��)m=2.

Theorem 2.3 There exist constants ci > 0 such that for N = 
2m and 0 < � �
2,

ln(��(N;2m)k(X(b; g;m; n;N; 2� �; k)))

� 2c1gb ln(2b=�) + c2mk � ((c3� � c4

1=4)
2mk:

1These values turn out not to be excessively large or small.
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Corollary 2.4 Let 3=4 < � < 1 and 
 = o(2�4(1��)m). Consider those k-tuples

of states jxi which satisfy that Probm(� j jxi) has at most 
2m non-zero values.

Then almost all such k-tuples of states require at least 
2�m(1�o(1))k g-input

gates for approximation by a quantum circuit on the �rst m qubits to within a

TVD of 2� 2�(1��)m.

Proofs of Theorems 2.1 and 2.3. The proofs of the theorems closely follow

those given for Theorems 4.4 and 4.5 in [5]. We outline of the proofs, deferring

the proofs of the lemmas to the following section.

First note that if we represent a unitary operator by the composition

of b �xed gates, we have at most
�n
g

�b
choices for ways of composing them. This

gives a bound on the number of structurally distinct quantum circuits. The next

observation is that the group of unitary operators on g qubits can be densely

covered using a constant (for �xed g) number of operators. This is formalized

by Lemma 4.4 of [5] which we state next. For any linear operator U , let jjU jj2
denote the two-norm of U de�ned by

jjU jj2 = max
x:jxj=1

jUxj:

Lemma 2.5 There exists a subset Ug;� of Gg with no more than (2=�)2
4g

el-

ements such that for every V 2 Gg there exists a U 2 Ug;� satisfying that

jjU � V jj2 � �.

The lemma's relevance to the problem at hand is due to the relationship

between the two-norm and the TVD, and the behavior of the two-norm under

composition of unitary operators. The two-norm satis�es

jProb(� j U jbi)� Prob(� j V jbi)j1 � 2jjU � V jj2

(Lemma 2.2 of [5]) and for unitary operators Ui and Vi

jjU1U2 � V1V2jj2 � jjU1 � V1jj2 + jjU2 � V2jj2

(Lemma 2.3 of [5]).

Let d = 2=e � � for Theorem 2.1 and d = 2 � � for Theorem 2.3. Let

Bx(d) = fy j jx� yj1 < dg. Let X = X(b; g;m;n;N; d; k). Then X is included

in the union of the balls B�m(U)((1 + �)d), where U ranges over the unitary

operators de�ned by those circuits of at most b elements for which each gate is

in Ug;�d=(2b).
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Choose � = �=(2d). First consider the statement of Theorem 2.1. By

Theorem 3.11 there are constants ci > 0 such that

ln(��(N;2m)kB�m(U)((1 + �)d) \�(N; 2m)k)) � �(c1�22m � c2m)k;

which implies

�(X) �
 
n

g

!b
(4b=(�d))2

4gb e�(c
1
�22m�c

2
m)k;

ln(�(X)) � b(ln(n) + 24g ln(4b=(�d)))� c1�
22mk + c2mk

� 2c3gb ln(2b=�)� c1�
22mk + c2mk:

This proves Theorem 2.1.

To prove Theorem 2.3, we can proceed in a similar fashion. Let


 = N=2m. By Theorem 3.12 there are constants c1, c2 and c3 such that for

su�ciently large m,

ln �(B�m(U)((1 + �)d)\�(N; 2m)k) � �(c1� � c2

1=4)
2mk + c3mk:

Hence

�(X) �
 
n

g

!b
(4b=(�d))2

4gb e�(c1��c2

1=4)
2mk+c3mk

ln(�(X)) � 2c3gb ln(2b=�) + c3mk � (c1� � c2

1=3)
2mk:

3 Large Deviation Bounds For Total Variation Distance

For the remainder of the paper we assume that N � 2.

3.1 The Expectation of jx� yj1

For �xed x, let

D(x; N 0; N) =

Z
d��(N 0;N)(y)jx� yj1:

be the expected TVD of x from elements of �(N 0; N). Write D(x; N) =

D(x; N;N).

Lemma 3.1 For x � 0, D(x; N) =
P

i
2
N
(1� xi)

N +
P

i xi � 1.
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Proof. We have jx� yj1 =
P

i jxi � yij, so by additivity of expectations, we

can consider each coordinate separately. The induced density function of the

distribution of yi is (N � 1)(1� t)N�2. The contribution of the i'th coordinate

to D(x; N) is

Z 1

0

dt(N � 1)jt� xij(1� t)N�2

= (N � 1)

Z xi

0

dt(xi � t)(1� t)N�2 + (N � 1)

Z 1

xi

dt(t� xi)(1� t)N�2:

We have

(N � 1)

Z
dt(xi � t)(1� t)N�2 = ( 1

N (1� t) � (xi � t))(1� t)N�1 + C;

so that the contribution of the �rst coordinate is

Exp(jxi � yij) = 2

N
(1� xi)

N � (
1

N
� xi):

Corollary 3.2 D(1=N;N) = 2=e�O(1=N).

Lemma 3.3 For x � 0, D(x; N 0; N) =
P

i
2
N
(1� xi)

N 0

+
P

i xi � 1.

Proof. This is a direct application of Lemma 3.1. The contribution of xi is

1�N
N 0

�
0
@ X
S:i2S

Exp(jxi � yij : y 2 �(S;N)) +
X
S:i62S

xi

1
A

=

�N�1
N 0�1

�
�N
N 0

� �
2

N 0
(1� xi)

N 0

+ xi � 1

N 0

�
+

�N�1
N 0

�
�N
N 0

� xi
=

2

N
(1� xi)

N 0

+ xi � 1

N
:

Lemma 3.4 For x 2 �(N), D(x; N 0; N) is minimized by x = 1=N .

Proof. Note that D(x; N 0; N) is convex in x. By symmetry, the minimum

must be achieved by x = 1=N .
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3.2 On the Distribution of jx� yj : y 2 �(N)

Let

T (x; d; N 0; N) = ��(N 0;N)(y j jx� yj1 < d);

T (d;N 0; N) = T (1=N; d;N 0; N);

T (x; d; N) = T (x; d; N;N);

T (d;N) = T (1=N; d;N):

We would like to obtain good upper bounds on T (x; d; N) for x 2 �(N) and

d = 2=e� �.

Theorem 3.5 There exist constants ci > 0 such that for any x 2 �(N)

T (x; 2=e� �; N) � e�c1�
2N+c2 ln(N).

The proof of the theorem requires several lemmas. First we simplify

the problem to the case of x = 1=N .

Lemma 3.6 For x such that x � 1 = �N , T (x; d; N) is maximized by x = �1.

Proof. The proof is by induction on N . For N = 2, the result follows by

inspection. Let N > 2. Let x = (x1;x
0) with x

0 2 R
N�1. We have

�(y 2 �(N) j jx� yj1 < d)

= �((y1;y
0) 2 �(N) j jx1 � y1j+ jx0 � y

0j < d)

=

Z 1

0

dt(N � 1)(1� t)N�2

�(1�t)�(N�1)(y
0 2 (1� t)�(N � 1) j jx0 � y

0j < d� jx1 � tj);

where (1� t)�(N � 1) = fy � 0 j y � 1 = (1� t)g. In the last step we used the

fact that the distribution of y1 has density (N�1)(1� t)N�2. By induction and

scaling, the integrand is maximized by x0 = (x0 � 1)1=(N � 1) independently of

y1 and t. Note that replacing x
0 by (x0 �1)1=(N� 1) does not change x �1. This

implies that the probability of interest is maximized if every subset of N � 1

coordinates of x is uniform, which is satis�ed only by x = �1.

To obtain a bound on T (d;N) requires decomposing �(N) according to

which orthant y�1=N belongs to. Formally, let �k(N) be the set of y 2 �(N)
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such that exactly the �rst k coordinates of y � 1=N are positive. Then �(N)

is a disjoint union of coordinate permuted copies of the �k(N). In particular

1 = ��(N)(�(N)) =
X
k

 
N

k

!
��(N)�k(N):

We will make use of the tail probabilities of the sums of N � 1 inde-

pendent identically distributed uniform random variables. We de�ne them here

in the language of polytopes. Let [0; 1] = fx 2 R j 0 � x � 1g and

U(M; s) = �[0;1]Mfx 2 [0; 1]M j x � 1 < sg:

Lemma 3.7 There exist constants ai > 0 and 0 < �0 < 1 such that for jk=N �
�0j > �,  

N

k

!
��(N)(�k(N)) � e�a1�

2N+a2 ln(N):

Proof. Note that �0(N) has measure zero, so we can assume that k > 0.

Let Xk = �k(N)� 1=N . We project Xk onto the last N � 1 coordinates and

consider its measure in the set S = fz j z � �1=N; z � 1 � 0g. The volume of

this set is 1=(N � 1)!. The projection of an element of Xk can be written as

(y; z) with y 2 R
k�1 and z 2 R

N�k corresponding to the positive and negative

coordinates, respectively.

��(N)(�k(N)) = �S(Xk)

= (N � 1)! �((y; z) j y 2 R
k�1; y � 0;

z 2 R
N�k; 1=N � z � 0; z � 1 � y � 1)

= (N � 1)!=NN�1 �((y; z) j y 2 R
k�1; y � 0;

z 2 [0; 1]N�k; z � 1 � y � 1)
= (N � 1)!=NN�1 �((y; z) j y 2 R

k�1; y � 0;

z 2 [0; 1]N�k; N � k � (y; z) � 1);

where we scaled by N in the second step and obtained the last identity by

replacing z with z � 1. The volume in the last expression can be decomposed

according to which translate of the standard hypercube y is in. We label these

translates by the coordinates of the corner nearest the origin and note that by
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symmetry, only the sum of these coordinates is relevant. This gives

��(N)(�k(N)) = (N � 1)!=NN�1
N�kX
l=0

 
k + l� 2

k � 2

!

�(y 2 [0; 1]N�1jN � k � l � y � 1)

= (N � 1)!=NN�1
N�kX
l=0

 
k + l� 2

k � 2

!
U(N � 1; N � k � l):

Let

C(k; l) = (N � 1)!=NN�1

 
N

k

! 
k + l � 2

k � 2

!
U(N � 1; N � k � l):

We next show that there exist bi > 0, 0 < �0 < 1 and 0 < �0 < 1 such that for

(jk=N � �0j2 + jl=N � �0j2)1=2 > �, C(k; l) � e�b1�
2N+b2 ln(N). By summing over

l, this implies that for jk=N � �0j > � 
N

k

!
�(�k(N)) � Ne�b1�

2N+b2 ln(N) = e�b1�
2N+(b2+1) ln(N);

which gives the lemma.

To prove the desired property of C(k; l), consider the functions

f(�; �;N) = ln(C(b�Nc; b�Nc))=N;
f(�; �) = lim

N
f(�; �;N);

with domain 0 � � � 1 and 0 � � + � � 1. Since the sum of the C(k; l) is

1, f(�; �;N) � 0. Let He(x) = �x ln(x)� (1 � x) ln(1� x) be the information

function base e. Then for some constant b2,

f(�; �;N)� �1+He(�)+(�+�)He(�=(�+�))+ln(U(N�1; N(1����)))=N+b2 ln(N)=N;

where we applied Lemma A.3 and Stirling's approximation. The term b2 ln(N)=N

accounts for the polynomial factors in Stirling's approximation of (N � 1)! as

well as the correction for integer rounding in Lemma A.3. By Theorem A.7,

r(x) = � limn ln(U(n; x))=n is convex (where it is �nite) and identically 0 for

x � 1=2. In addition ln(U(n; xn))=n � �r(x). Hence

f(�; �;N) � fu(�; �;N) =def b2 ln(N)=N � 1 +He(�)

+ (�+ �)He(�=(�+ �))� (N � 1)=N r((1� �� �)(N=(N � 1)));

f(�; �) = �1 +He(�) + (�+ �)He(�=(�+ �))� r(1� �� �):
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To show that f(�; �) is strictly concave, we evaluate the Hessian of g(�; �) =

f(�; �) + r(1� � � �). Note that (� + �)He(�=(�+ �)) = �� ln(�)� � ln(�) +

(�+ �) ln(�+ �):

@�g(�; �) = ln(1� �)� 2 ln(�) + ln(�+ �)

@�g(�; �) = � ln(�) + ln(�+ �)

@2�g(�; �) = � 1

1 � �
� 2

�
+

1

� + �

= � 1

�(1� �)
� �

�(�+ �)

@2�g(�; �) =
��

�(�+ �)

@�@�g(�; �) =
1

� + �
:

The Hessian of g is therefore given by

" � 1
�(1��) � �

�(�+�)
1

�+�
1

�+�
��

�(�+�)

#
:

Thus the diagonal elements of the Hessian are strictly negative for 0 < � < 1
and 0 < � < 1. Its determinant is given by

��
�(�+�)

(� 1
�(1��) � �

�(�+�)
)� 1

(�+�)2
=

1

�(1� �)(�+ �)
:

This is strictly positive on the domain, which implies strict concavity of h(�; �)

and hence of f(�; �). The function f(�; �) therefore has a unique maximum. The

value at the maximum is 0 by the asymptotic lower bounds of Theorem A.7 and

the fact that C(k; l) � 1. Let �0 and �0 be the location of the maximum of

f(�; �). Since f(�; �) = �1 on the boundary of its domain, the maximum

occurs in the interior. The concavity and di�erentiability properties imply that

there exists b3 > 0 such that if ((� � �0)
2 + (� � �0)

2)1=2 � �, then f(�; �) �
�b3�2 (this can be shown formally by use of the multidimensional Taylor series

expansion with the remainder and applying strict concavity and boundedness

of the domain). Choose b1 small enough and b2 large enough to compensate

for the di�erences in the arguments of r in fu(�; �;N) and f(�; �). This gives

fu(�; �;N)� �b1�2 + b2 ln(N)=N .

Lemma 3.7 allows us to consider only those
�N
k

�
�k(N;�=N) with k

11



near the the maximizing value. De�ne

Tk(d;N) =

 
N

k

!
��(N)(y 2 �k(N) j j1=N � yj1 < d):

To estimate Tk, we will study its density function T 0
k(d;N) = d

dt
Tk(t; N)jt=d.

Note that Tk(t; N) is di�erentiable.

Lemma 3.8 Let �0 be as in Lemma 3.7. There exist constants bi > 0, �0 > 0

and a function 0 < d(�) < 2 such that for j� � �0j � �0 and jd � d(�)j > �,

T 0
b�Nc(d;N) � e�b1�

2N+b2 ln(N). The function d(�) can be chosen to be continu-

ously di�erentiable on its domain.

Proof. By using the �rst part of the proof of Lemma 3.7, we can write Tk as

follows:

Tk(d;N) =

 
N

k

!
(N � 1)!=NN�1

�((y; z) j y 2 R
k�1; y � 0;

z 2 [0; 1]N�k; 2z � 1 � Nd;

y � 1 � z � 1)

=

 
N

k

!
(N � 1)!=NN�1

Z Nd=2

0

dt

U 0(N � k; t)
1

(k � 1)!
tk�1:

Di�erentiating by d gives

T 0
k(d;N) =

 
N

k

!
(N � 1)!=NN�2 (Nd=2)k�1=(k � 1)!

U 0(N � k;Nd=2):

Consider k = b�Nc and de�ne

t(d) = lim
N

ln(T 0
�N(d;N))=N:

We proceed as in the proof of Lemma 3.7 and use Theorem A.7 to obtain:

t(d) = He(�)� 1 + (1� �)h0(d=(2(1� �)))

+ � ln(d=2) + � � � ln(�);
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where h0(x) = limN ln(U 0(N; x))=N is strictly concave. It is clear that t(d) is

strictly concave in d, with a negative second derivative where it is �nite. Hence t

has a unique maximum for some d = d(�), at which it must be 0. It follows that

there is a constant b3 > 0 such that for, t(d(�)��) � e�b3�
2N . Since h0(x) = �1

for x � 1, and the second derivative of ln(d=2) is strictly bounded above by c < 0

for d=2 � 1, we can choose b3 independently of �. The derivative @dt is strictly

monotone in d for each � in the domain and is continuously di�erentiable in both

� and d (using Theorem A.7 for h0). Thus d(�) is de�ned by @dt(d(�)) = 0. By

implicit di�erentiation, @d@�t@�d+ @2�t = 0. By strict concavity and continuity

of the functions involved, @�d is well de�ned with a continuous derivative.

To obtain the bound of the lemma, it now su�ces to apply (5) of

Theorem A.7 and Stirling's approximation. Note that 0 < �0 < 1 so that the

term r0(x) in (5) is bounded for �0 small enough.

We are now ready to give the proof of Theorem 3.5.

Proof of Theorem 3.5. The quantity 2=e is asymptotically the average dis-

tance of elements of �(N) to 1=N . Let �0 and ai be as in the statement

of Lemma 3.7 and d(�), bi and �0 as in the statement of Lemma 3.8. Let

d0 = d(�0). Choose c3 such that jd0 � d(�0 + t)j < c3jtj for all t < �0.

We claim that d0 = 2=e. The results so far imply that the distribution

of j1=N � yj1 is strongly concentrated at its average as N !1, which implies

the result. More speci�cally, to see that d0 � 2=e+o(1), consider for �=(2c3) � �0

T (d0 � �;N) �
X

k:jk=N��0j��=(2c3)

Tk(d0 � �;N) +
X

k:jk=N��0j>�=(2c3)

Tk(2; N)

� e�b1(�=2)
2N+b0

2
ln(N) + e�a1(�=(2c3))

2N+a0
2
ln(N);

where a2 and b2 have been adjusted to absorb factors of N and 2 from the

summation and integration of T 0
k.

Let da be the average value of j1=N�yj1. The above inequalities imply

that

da � (d0 � �)(1� e�a�
2N(1+o(1))):

A reverse inequality is obtained similarly and the claim follows by letting N !
1 and � ! 0.

Replacing � by � in the inequalities above and choosing c2 large enough

gives the theorem, provided that �=(2c3) � �0. One can extend the result to all

� by noting that only the case � < 2 is non-trivial and choosing c1 small enough

13



and c2 large enough to cover the remaining range by exploiting monotonicity of

T (d0 � �; N) for �=(2c3) > �0 and N large enough.

3.3 On the Distribution of jx� yj : y 2 �(N 0; N)

Consider �(N 0; N) with N 0 = o(N). We would like to show that for all x 2
�(N), most elements of �(N 0; N) have distance at least 2� �.

Theorem 3.9 There exists constants ci > 0 such that for 0 < 
 < 1

��(b
Nc;N)(y j jx� yj < 2� �) � e�(c1��c2

1=4)
N+c3 ln(N):

Proof. We assume without loss of generality that b
Nc = 
N (the correction

to the exponent on the righthand side can be absorbed by the c3 ln(N) term).

Fix N and let � and � be positive constants with properties to be determined.

Let x 2 �(N). De�ne

L(x) = fi j xi � �=Ng;
B(S) = �(S;N)\ fy j jx� yj1 < 2� �g

with S = 
N . Our goal is to show that for most S, ��(S;N)(B(S)) is small.

To do so requires another lemma on the distribution of the TVD.

Lemma 3.10 Let z = (z(1); z(2)) with z
(1) 2 R

k and z
(2) 2 R

N�k. Then for

k = b�Nc,

��(N)(y j jz� yj < jz(1) � 1j+ j1� z
(2) � 1j � �) � e(�j ln(�=e)j��(1��)=2)N :

Proof. For y 2 �(N), write y = (y(1);y(2)) with y(1) 2 R
k and y(2) 2 R

N�k .

Let w1 = y
(1) � 1. We have

jz� yj1 � jz(1) � 1 � y
(1) � 1j+ jz(2) � 1� y

(2) � 1j
= jz(1) � 1 � w1j+ j1� w1 � z

(2) � 1j
� jz(1) � 1j+ j1� z

(2) � 1j � 2w1:

It follows that

��(N)(y j jz� yj1 < jz(1) � 1j+ j1� z
(2) � 1j � �) � �(y j w1 > �=2):

14



The distribution of w1 for y in �(N) is that of a � distribution:

f(w1) = (N � 1)

 
N � 2

k � 1

!
wk�1
1 (1� w1)

N�k�1:

We can estimate

�(y j w1 > �=2) �
Z 1

�=2
dt(N � 1)

 
N � 2

k � 1

!
(1� t)N�k�1

=

 
N � 1

k � 1

!
(1� �=2)N�k

�
 
N

k

!
(1� �=2)N�k

� e�j ln(�=e)jN+ln(1��=2)(1��)N

� e�j ln(�=e)jN��(1��)N=2;

where we used Lemma A.3 and its corollary.

Suppose that jS \ L(x)j = (1 � �)jSj = (1 � �)
N . We can estimate

��(S;N)(B(S)) with the help of Lemma 3.10 by projecting x on the coordinates

in S and considering the coordinates in S n L(x) versus those in S \ L(x) .

Let w1, w2 and w3 be the total weight of the coordinates of x in S n L(x),
S \ L(x) and the complement of S, respectively. We have w2 � (1 � �)�


and w1 + w3 � 1� (1 � �)�
. The distance parameter in Lemma 3.10 relative

to S partitioned into S n L(x) and S \ L(x) is given by w1 + 1 � w2. The

distance of x to an element of D(S;N) due to the coordinates outside of S is

w3. We have w1 + 1 � w2 + w3 � 2 � �=2, provided that �
 � �=4. Write

a(�) = ��j ln(�=e)j) + �(1� �)=4. Lemma 3.10 implies that

��(S;N)(B(S)) � e�a(�)
N :

Let a = a(�) with 0 < � < 1. Since a(�) is decreasing in �, we have ��(S;N)(B(S)) �
e�a
N provided that jS \ L((x))j � jSj � d�jSje and �
 � �=4.

We estimate the fraction of subsets S satisfying jS\L(x)j < jSj�d�jSje.
Note that (N � jL(x)j)�=N � 1, so that jL(x)j=N � 1� 1=�. If 1=� � � we can

apply Lemma A.6 and monotonicity of Ke to obtain

fS j jSj = 
N; jS \ L(x)j � jSj � d�jSjeg

� 
N

 
N � bN=�c
N � d�
Ne

! 
bN=�c
d�
Ne

!
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�
 
N


N

!
e�Ke(�;1=�)
N+ln(
N)

� e(�� ln(��)�1=�+�)
N+ln(
N)

� e� ln(��=e)�
N+ln(
N):

Combining these results we get

��(
N;N)(y j jx� yj < 2� �) � e�(�(1��)=4��j ln(�=e)j)
N

+ e� ln(��=e))�
N+ln(
N);

for 0 < � < 1, �� � 1 and �
 � �=4.

A rough estimate can be obtained by letting � = �=(16jln(�=(16e))j).
and � = �=(4
). We will assume that 
 � (�=(16e2))�2=(64jln(�=(16e))j). This
is true for 
 � c02�

4 for some constant c02. Recall that without loss of generality

� < 2. Thus ln(8e) � jln(�=(16e))j � 16e=�.

�(1� �)=4 � 15�=64;

jln(�=e)j = jln(�=(16e))� ln jln(�=(16e))jj
� 2jln(�=(16e))j

�jln(�=e)j � �=8

ln(��=e) � j ln(�=(16e)))j
� ln(��=e) � �=16:

The inequality of the theorem follows.

3.4 Extensions of the bounds to �(N 0; N)k

It is now straightforward to obtain general bounds for �(N 0; N)k by using

Lemma A.1.

Theorem 3.11 There exist ci > 0 such that for 1 � k � N and x 2 �(N)k

��(N)k(y j jx� yj1 < 2=e� �) � e�(c1�
2N+c2 ln(N))k:

Proof. Theorem 3.5 and Lemma A.1 with m = 2k give

��(N)k(y j jx� yj1 < d) �
 
2k � 1

k � 1

!
(e�c1�

2=4 N+c2 ln(N))k

� e�c
0

1
�2Nk+c0

2
ln(N)k;
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for suitable choices of constants.

Theorem 3.12 There exist ci > 0 such that for 0 < 
 < 1

��(
N;N)k(y j jx� yj < 2� �) � e�(c
1
��c

2

1=4)
Nk+c

3
ln(N)k:

Proof. Follow the proof of Theorem 3.11, using Theorem 3.9 and Lemma A.1

with m = 2k.

A Appendix

A.1 Miscellaneous Bounds

We begin by giving several lemmas which are special cases of weak large devia-

tion laws.

Lemma A.1 Let �i be probability distributions on R and �(n) =
Qn
i=1 �i. Sup-

pose that �i(x j x > t) � e��(t), with �(t) convex (where �nite) and for t � 0,

�(t) = 0. Then for m > n,

�(n)(x j x � 1 � nt) �
 
m� 1

n� 1

!
e�n�(t(1�n=m)):

Proof. Let m > n. Consider x 2 R
n such that x � 1 � nt. If y is the vector

with coordinates yi = bxim=ntcnt=m, then y � 1 � nt(1 � n=m). It follows

that for each such x, there is an integer vector l such that l � 1 = m � n and

lnt=m � x. De�ne �(li) = li for li > 0 and �(li) = �1 otherwise. Using the

assumption that �(0) = 0, we can estimate

�(n)(x j x � 1 � nt) �
X

l:l2Zn; l�0; l�1=m�n

�i(x j x � �(l))

�
X

l:l2Zn; l�0;l�1=m�n

e�
Pn

i=1
�(lint=m):

Convexity of � implies that

nX
i=1

�(lint=m) � n�(
X
i

lit=m):
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This gives

�(n)(x j x � 1 � nt) �
X

l:l2Zn; l�0;l�1=m�n

e�n�(t(1�n=m))

�
 
m� 1

n� 1

!
e�n�(t(1�n=m)):

Let He(�) = �� ln(�) � (1 � �) ln(1 � �). This is the information

function base e.

Lemma A.2 For 0 � � � 1, He(�) � �j ln(�=e)j.

Proof. The summand �(1��) ln(1��) is concave with a slope of 1 at � = 0.

Lemma A.3 For n � 1 and 0 � � � 1, 
n

b�nc

!
� eHe(b�nc=n)n

� eHe(�)n+ln(en)

and limn ln
� N
b�nc

�
=n = He(�).

Proof. For �n integral, it can be shown that
� n
�n

� � eHe(�)n by applying a

tight form of Stirling's approximation, for example,

p
2�n(n=e)ne1=(12n+1) � n! �

p
2�n(n=e)ne1=(12n):

This form of Stirling's approximation can be found in [6]. For non-integral �n it

su�ces to observe that jHe(�)�He(b�nc=n)j � He(
1
n
). The result then follows

by Lemma A.2.

Corollary A.4 For 0 � � � 1,
� n
b�nc

� � e�j ln(�=e)j)n.
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Proof. Let �0 = b�nc=n. By Lemma A.3 we have

 
n

�0n

!
� eHe(�

0)n

� e�
0j ln(�0=e)jn

� e�j ln(�=e)jn:

For 0 < � < 1 and 0 � � � 1, de�ne Ke(�; �) = � ln(�=�)+(1��) ln((1�
�)=(1 � �)). Also let Ke(0; 0) = Ke(1; 1) = 0 and Ke(�; 0) = Ke(�; 1) = 1
otherwise.

Lemma A.5 For 0 < � � �, Ke(�; �) � � ln(�=�) + �� �.

Proof.

Ke(�; �) = � ln(�=�) + (1� xi) ln((1� �)=(1� �))

� � ln(�=�) + (1� �)(1� (1� �)=(1� �))

= � ln(�=�) + �� �;

since ln(x) � (1� 1=x) for 0 < x � 1.

Lemma A.6 Let 0 � 
 � 1 and 
0 = b
nc=n. For 0 � � � � � 1 and 1 � n,

 
n� b�nc


0n� d�
0ne

! 
b�nc
d�
0ne

!
�
 
n


0n

!
e�Ke(�;�)


0n:

Proof. De�ne (n)l = n(n � 1) : : :(n � l + 1) (the l'th falling factorial of n).

Assume �rst that �n and �
0n are integral, and ignore the restriction that � � �.

The inequality is trivial for �
0 > �. 
(1� �)n

(1� �)
0n

! 
�n

�
0n

!
=

 
n


0n

! 

n

�
0n

!
((1� �)n)(1��)
0n (�n)�
0n / (n)
0n

�
 
n


0n

! 

0n

�
0n

!
((1� �)n)(1��)


0n(�n)�

0n / n


0n

�
 
n


0n

!
e�Ke(�;�)
0n;
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where we applied the inequality of Corollary A.4 and estimated the term involv-

ing the falling factorials by using the inequality (a� c)=(b� c) � a=b for b � a

and a > c � 0.

If �n and �
n are not integral, the inequality holds with � and �

replaced by �0 = b�nc=n and �0 = d�
0ne. The result follows because the

exponent on the righthand side of the desired inequality is increasing in � and

decreasing in � for � � �.

A.2 Cram�er's Theorem for the Uniform Distribution

One of the fundamental results of the theory of large deviations is Cram�er's

theorem. Here we need a version of this theorem for uniformly distributed

random variables.

Theorem A.7 Let Xi be independent and uniformly distributed on [�1; 1] and
write Sn = 1

n

Pn
i=1Xi. De�ne F (x) = Prob(Sn < x) and let f(x) = F 0(x) be

the density of Sn. Let r(x) = � limn ln(f(x))=n. Then the following hold:

(1) r(x) � 0, r(0) = 0 and r(x) =1 for x 62 (�1; 1).

(2) r(x) is convex and twice di�erentiable on (�1; 1).

(3) For x � 0, F (x) � e�r(x)n.

(4) For x � 0, r(x) = � limn ln(F (x))=n.

(5) There exists c such that for �1 < x < 1 f(x) � e�r(x)n+c ln((jr
0(x)j+e)n).

(6) r(x) = � limn ln(f(x))=n.

Proof. The function r is the rate function. In this case it is obtained as follows.

Let

�(t) = ln Exp(etXi) = ln(
2

t
sinh(t)):

The function r(x) is given by r(x) = supt(tx � �(t)). Since �(t) is smooth

and strictly convex, r(x) is obtained by �rst �nding t(x) such that �0(t(x)) =

x and then evaluating r(x) = t(x)x � �(t(x)). By implicit di�erentiation,

�00(t(x))t0(x) = 1. By strict convexity, �00(t) is never zero, so t is continu-

ously di�erentiable on its domain. By taking higher derivatives implicitly, one

can see that t is in fact smooth (where �nite). This implies that r is smooth
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where �nite. Note that r0(x) = t(x). This together with the proof of Cram�er's

theorem found in most textbooks gives (1), (2), (3) and (4) (e.g. [3]). For the

inequality of (5) observe that f(x) is symmetric and unimodular so that for

x � 0 and � > 0, F (x) � �f(x� �). Hence for � � jxj,

f(x) = f(x+ � � �)

� 1

�
F (x+ �)

� 1

�
e�r(x+�)n:

If jxj � 1
jr0(x)jn , let � = 1

jr0(x)jn and use convexity of r to see that f(x) �
jr0(x)jne�r(x)n+1 � e�r(x)n+ln((jr0(x)j+e)n). For jxj � 1

jr0(x)jn we use the result

on cube slicing in [1] which implies that f(0) � p
n=2. For such x we have

r(x) � 1
n
. Hence f(x) � pn=2 � e�r(x)n+ln((jr0(x)j+e)n). For x = 0, (5) is trivial,

and for x > 0 we can use symmetry. Part (6) follows from (4), (5) and the

observation that for x � 0, F (x) � (1� x)f(x).
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