20,948 research outputs found
The Properties of the Hot Gas in Galaxy Groups and Clusters from 1-D Hydrodynamical Simulations -- I. Cosmological Infall Models
We report the results of 1-D hydrodynamical modelling of the evolution of gas
in galaxy clusters. We have incorporated many of the effects missing from
earlier 1-D treatments: improved modelling of the dark matter and galaxy
distributions, cosmologically realistic evolution of the cluster potential, and
the effects of a multiphase cooling flow. The model utilises a fairly standard
1-D Lagrangian hydrodynamical code to calculate the evolution of the
intracluster gas. This is coupled to a theoretical model for the growth of dark
matter density perturbations. The main advantages of this treatment over 3-D
codes are (1) improved spatial resolution within the cooling flow region, (2)
much faster execution time, allowing a fuller exploration of parameter space,
and (3) the inclusion of additional physics.
In the present paper, we explore the development of infall models -- in which
gas relaxes into a deepening potential well -- covering a wide range of cluster
mass scales. We find that such simple models reproduce many of the global
properties of observed clusters. Very strong cooling flows develop in these 1-D
cluster models. In practice, disruption by major mergers probably reduces the
cooling rate in most clusters. The models overpredict the gas fraction in low
mass systems, indicating the need for additional physical processes, such as
preheating or galaxy winds, which become important on small mass scales.Comment: 38 pages, 21 encapsulated postscript figures, accepted for
publication in MNRA
Reverse Current in Solar Flares
The theory that impulsive X ray bursts are produced by high energy electrons streaming from the corona to the chromosphere is investigated. Currents associated with these streams are so high that either the streams do not exist or their current is neutralized by a reverse current. Analysis of a simple model indicates that the primary electron stream leads to the development of an electric field in the ambient corona which decelerates the primary beam and produces a neutralizing reverse current. It appears that, in some circumstances, this electric field could prevent the primary beam from reaching the chromosphere. In any case, the electric field acts as an energy exchange mechanism, extracting kinetic energy from the primary beam and using it to heat the ambient plasma. This heating is typically so rapid that it must be expected to have important dynamical consequences
On Holiday! Policy and provision for disabled children and their families
This summary describes some findings from the On Holiday! study, carried out by the Thomas Coram Research Unit between 2004 and 2006 and funded by DfES. The study investigated the experiences of disabled children and their families outside school time and especially during the school holidays. The study took an approach informed by a social model of disability, one which emphasises the social construction of disability, rather than impairment
The shape of the urine stream â from biophysics to diagnostics
We develop a new computational model of capillary-waves in free-jet flows, and apply this to the problem of urological diagnosis in this first ever study of the biophysics behind the characteristic shape of the urine stream as it exits the urethral meatus. The computational fluid dynamics model is used to determine the shape of a liquid jet issuing from a non-axisymmetric orifice as it deforms under the action of surface tension. The computational results are verified with experimental modelling of the urine stream. We find that the shape of the stream can be used as an indicator of both the flow rate and orifice geometry. We performed volunteer trials which showed these fundamental correlations are also observed in vivo for male healthy volunteers and patients undergoing treatment for low flow rate. For healthy volunteers, self estimation of the flow shape provided an accurate estimation of peak flow rate (+-2%). However for the patients, the relationship between shape and flow rate suggested poor meatal opening during voiding. The results show that self measurement of the shape of the urine stream can be a useful diagnostic tool for medical practitioners since it provides a non-invasive method of measuring urine flow rate and urethral dilation
Recommended from our members
The Climate Imperative and Innovative Behavior: Encouraging Greater Advances in the Production of Energy-Efficient Technologies and Services
This white paper examines why a larger array of innovative institutions, behaviors, technologies, and servicesis needed â specifically in the context of what we call âthe climate imperative.â We explore possible mechanisms that can encourage the more robust development of innovative programs and policies within the State of California, with special attention to the activities of the California Public Utilities Commission
The origin of non-classical effects in a one-dimensional superposition of coherent states
We investigate the nature of the quantum fluctuations in a light field created by the superposition of coherent fields. We give a physical explanation (in terms of Wigner functions and phase-space interference) why the 1-D superposition of coherent states in the direction of the x-quadrature leads to the squeezing of fluctuations in the y-direction, and show that such a superposition can generate the squeezed vacuum and squeezed coherent states
Full-vector analysis of a realistic photonic crystal fiber
We analyze the guiding problem in a realistic photonic crystal fiber using a
novel full-vector modal technique, a biorthogonal modal method based on the
nonselfadjoint character of the electromagnetic propagation in a fiber.
Dispersion curves of guided modes for different fiber structural parameters are
calculated along with the 2D transverse intensity distribution of the
fundamental mode. Our results match those achieved in recent experiments, where
the feasibility of this type of fiber was shown.Comment: 3 figures, submitted to Optics Letter
Two-fluid model of the solar corona
A simple model of the lower corona which allows for a possible difference in the electron and proton temperatures is analyzed. With the introduction of a phenomenological heating term, temperature and density profiles are calculated for several different cases. It is found that, under certain circumstances, the electron and proton temperatures may differ significantly
- âŠ