515 research outputs found

    Full quantum solutions to the resonant four-wave mixing of two single-photon wave packets

    Full text link
    We analyze both analytically and numerically the resonant four-wave mixing of two co-propagating single-photon wave packets. We present analytic expressions for the two-photon wave function and show that soliton-type quantum solutions exist which display a shape-preserving oscillatory exchange of excitations between the modes. Potential applications including quantum information processing are discussed.Comment: 7 pages, 3 figure

    Single-mode photonic crystal fiber with an effective area of 600 square-micron and low bending loss

    Full text link
    A single-mode all-silica photonic crystal fiber with an effective area of 600 square-micron and low bending loss is demonstrated. The fiber is characterized in terms of attenuation, chromatic dispersion and modal properties.Comment: 10 pages including 3 figures. Accepted for Electronics Letter

    Phenomenological glass model for vibratory granular compaction

    Full text link
    A model for weakly excited granular media is derived by combining the free volume argument of Nowak et al. [Phys. Rev. E 57, 1971 (1998)] and the phenomenological model for supercooled liquids of Adam and Gibbs [J. Chem. Phys. 43, 139 (1965)]. This is made possible by relating the granular excitation parameter \Gamma, defined as the peak acceleration of the driving pulse scaled by gravity, to a temperature-like parameter \eta(\Gamma). The resulting master equation is formally identical to that of Bouchaud's trap model for glasses [J. Phys. I 2, 1705 (1992)]. Analytic and simulation results are shown to compare favourably with a range of known experimental behaviour. This includes the logarithmic densification and power spectrum of fluctuations under constant \eta, the annealing curve when \eta is varied cyclically in time, and memory effects observed for a discontinuous shift in \eta. Finally, we discuss the physical interpretation of the model parameters and suggest further experiments for this class of systems.Comment: 2 references added; some figure labels tweaked. To appear in PR

    A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation

    Get PDF
    An efficient calibration method has been developed for broad-bandwidth cavity enhanced absorption spectroscopy. The calibration is performed using phase shift cavity ring-down spectroscopy, which is conveniently implemented through use of an acousto-optic tunable filter (AOTF). The AOTF permits a narrowband portion of the SC spectrum to be scanned over the full high-reflectivity bandwidth of the cavity mirrors. After calibration the AOTF is switched off and broad-bandwidth CEAS can be performed with the same light source without any loss of alignment to the set-up. We demonstrate the merits of the method by probing transitions of oxygen molecules O-2 and collisional pairs of oxygen molecules (O-2)(2) in the visible spectral range

    Identification of a new p53/MDM2 inhibitor motif inspired by studies of chlorofusin

    Get PDF
    Previous studies on the natural product chlorofusin have shown that the full peptide and azaphilone structure are required for inhibition of the interaction between MDM2 and p53. In the current work, we utilized the cyclic peptide as a template and introduced an azidonorvaline amino acid in place of the ornithine/azaphilone of the natural product and carried out click chemistry with the resulting peptide. From this small library the first ever non-azaphilone containing chlorofusin analogue with MDM2/p53 activity was identified. Further studies then suggested that the simple structure of the Fmoc-norvaline amino acid that had undergone a click reaction was also able to inhibit MDM2/p53 interaction. This is an example where studies of a natural product have led to the serendipitous identification of a new small molecule inhibitor of a protein-protein interaction

    Bifurcations of a driven granular system under gravity

    Full text link
    Molecular dynamics study on the granular bifurcation in a simple model is presented. The model consists of hard disks, which undergo inelastic collisions; the system is under the uniform external gravity and is driven by the heat bath. The competition between the two effects, namely, the gravitational force and the heat bath, is carefully studied. We found that the system shows three phases, namely, the condensed phase, locally fluidized phase, and granular turbulent phase, upon increasing the external control parameter. We conclude that the transition from the condensed phase to the locally fluidized phase is distinguished by the existence of fluidized holes, and the transition from the locally fluidized phase to the granular turbulent phase is understood by the destabilization transition of the fluidized holes due to mutual interference.Comment: 35 pages, 17 figures, to be published in PR

    Association of the gut microbiome with kidney function and damage in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL)

    Get PDF
    Background: The gut microbiome is altered in chronic kidney disease (CKD), potentially contributing to CKD progression and co-morbidities, but population-based studies of the gut microbiome across a wide range of kidney function and damage are lacking. Methods: In the Hispanic Community Health Study/Study of Latinos, gut microbiome was assessed by shotgun sequencing of stool (n = 2,438; 292 with suspected CKD). We examined cross-sectional associations of estimated glomerular filtration rate (eGFR), urinary albumin:creatinine (UAC) ratio, and CKD with gut microbiome features. Kidney trait-related microbiome features were interrogated for correlation with serum metabolites (n = 700), and associations of microbiome-related serum metabolites with kidney trait progression were examined in a prospective analysis (n = 3,635). Results: Higher eGFR was associated with overall gut microbiome composition, greater abundance of species from Prevotella, Faecalibacterium, Roseburia, and Eubacterium, and microbial functions related to synthesis of long-chain fatty acids and carbamoyl-phosphate. Higher UAC ratio and CKD were related to lower gut microbiome diversity and altered overall microbiome composition only in participants without diabetes. Microbiome features related to better kidney health were associated with many serum metabolites (e.g., higher indolepropionate, beta-cryptoxanthin; lower imidazole propionate, deoxycholic acids, p-cresol glucuronide). Imidazole propionate, deoxycholic acid metabolites, and p-cresol glucuronide were associated with prospective reductions in eGFR and/or increases in UAC ratio over ~6 y. Conclusions: Kidney function is a significant correlate of the gut microbiome, while the relationship of kidney damage with the gut microbiome depends on diabetes status. Gut microbiome metabolites may contribute to CKD progression
    • …
    corecore