15,202 research outputs found

    Correlation of spray dropsize distribution and injector variables Interim report

    Get PDF
    Correlation of spray drop size distribution and injector variable

    Improved large-mode area endlessly single-mode photonic crystal fibers

    Get PDF
    We numerically study the possibilities for improved large-mode area endlessly single mode photonic crystal fibers for use in high-power delivery applications. By carefully choosing the optimal hole diameter we find that a triangular core formed by three missing neighboring air holes considerably improves the mode area and loss properties compared to the case with a core formed by one missing air hole. In a realized fiber we demonstrate an enhancement of the mode area by ~30 % without a corresponding increase in the attenuation.Comment: 3 pages including 3 eps-figures. Accepted for Optics Letter

    A Study of Giant Pulses from PSR J1824-2452A

    Get PDF
    We have searched for microsecond bursts of emission from millisecond pulsars in the globular cluster M28 using the Parkes radio telescope. We detected a total of 27 giant pulses from the known emitter PSR J1824-2452A. At wavelengths around 20 cm the giant pulses are scatter-broadened to widths of around 2 microseconds and follow power-law statistics. The pulses occur in two narrow phase-windows which correlate in phase with X-ray emission and trail the peaks of the integrated radio pulse-components. Notably, the integrated radio emission at these phase windows has a steeper spectral index than other emission. The giant pulses exhibit a high degree of polarization, with many being 100% elliptically polarized. Their position angles appear random. Although the integrated emission of PSR J1824-2452A is relatively stable for the frequencies and bandwidths observed, the intensities of individual giant pulses vary considerably across our bands. Two pulses were detected at both 2700 and 3500 MHz. The narrower of the two pulses is 20 ns wide at 3500 MHz. At 2700 MHz this pulse has an inferred brightness temperature at maximum of 5 x 10^37 K. Our observations suggest the giant pulses of PSR J1824-2452A are generated in the same part of the magnetosphere as X-ray emission through a different emission process to that of ordinary pulses.Comment: Accepted by Ap

    Locating the source of projectile fluid droplets

    Full text link
    The ill-posed projectile problem of finding the source height from spattered droplets of viscous fluid is a longstanding obstacle to accident reconstruction and crime scene analysis. It is widely known how to infer the impact angle of droplets on a surface from the elongation of their impact profiles. However, the lack of velocity information makes finding the height of the origin from the impact position and angle of individual drops not possible. From aggregate statistics of the spatter and basic equations of projectile motion, we introduce a reciprocal correlation plot that is effective when the polar launch angle is concentrated in a narrow range. The vertical coordinate depends on the orientation of the spattered surface, and equals the tangent of the impact angle for a level surface. When the horizontal plot coordinate is twice the reciprocal of the impact distance, we can infer the source height as the slope of the data points in the reciprocal correlation plot. If the distribution of launch angles is not narrow, failure of the method is evident in the lack of linear correlation. We perform a number of experimental trials, as well as numerical calculations and show that the height estimate is insensitive to aerodynamic drag. Besides its possible relevance for crime investigation, reciprocal-plot analysis of spatter may find application to volcanism and other topics and is most immediately applicable for undergraduate science and engineering students in the context of crime-scene analysis.Comment: To appear in the American Journal of Physics (ms 23338). Improved readability and organization in this versio

    Kinetic pinning and biological antifreezes

    Full text link
    Biological antifreezes protect cold-water organisms from freezing. An example are the antifreeze proteins (AFPs) that attach to the surface of ice crystals and arrest growth. The mechanism for growth arrest has not been heretofore understood in a quantitative way. We present a complete theory based on a kinetic model. We use the `stones on a pillow' picture. Our theory of the suppression of the freezing point as a function of the concentration of the AFP is quantitatively accurate. It gives a correct description of the dependence of the freezing point suppression on the geometry of the protein, and might lead to advances in design of synthetic AFPs.Comment: 4 pages, 4 figure

    Cytometric analysis, genetic manipulation and antibiotic selection of the snail embryonic cell line Bge from Biomphalaria glabrata, the intermediate host of Schistosoma mansoni.

    Get PDF
    The invertebrate cell line, Bge, from embryos of the snail Biomphalaria glabrata, remains to date the only established cell line from any species of the Phylum Mollusca. Since its establishment in 1976 by Eder Hansen, few studies have focused on profiling its cytometrics, growth characteristics or sensitivity to xenobiotics. Bge cells are reputed to be challenging to propagate and maintain. Therefore, even though this cell line is a noteworthy resource, it has not been studied widely. With growing interest in functional genomics, including genetic transformation, to elucidate molecular aspects of the snail intermediate hosts responsible for transmission of schistosomiasis, and aiming to enhance the convenience of maintenance of this molluscan cell line, we deployed the xCELLigene real time approach to study Bge cells. Doubling times for three isolates of Bge, termed CB, SL and UK, were longer than for mammalian cell lines - longer than 40 h in complete Bge medium supplemented with 7% fetal bovine serum at 25 °C, ranging from ∼42 h to ∼157 h when 40,000 cells were seeded. To assess the potential of the cells for genetic transformation, antibiotic selection was explored. Bge cells were sensitive to the aminonucleoside antibiotic puromycin (from Streptomyces alboniger) from 5 μg/ml to 200 ng/ml, displaying a half maximal inhibitory concentration (IC50) of ∼1.91 μg/ml. Sensitivity to puromycin, and a relatively quick kill time (<48 h in 5 μg/ml) facilitated use of this antibiotic, together with the cognate resistance gene (puromycin N-acetyl-transferase) for selection of Bge cells transformed with the PAC gene (puroR). Bge cells transfected with a plasmid encoding puroR were partially rescued when cultured in the presence of 5 μg/ml of puromycin. These findings pave the way for the development of functional genomic tools applied to the host-parasite interaction during schistosomiasis and neglected tropical trematodiases at large

    Heart of glass anchors Rasip1 at endothelial cell-cell junctions to support vascular integrity.

    Get PDF
    Heart of Glass (HEG1), a transmembrane receptor, and Rasip1, an endothelial-specific Rap1-binding protein, are both essential for cardiovascular development. Here we performed a proteomic screen for novel HEG1 interactors and report that HEG1 binds directly to Rasip1. Rasip1 localizes to forming endothelial cell (EC) cell-cell junctions and silencing HEG1 prevents this localization. Conversely, mitochondria-targeted HEG1 relocalizes Rasip1 to mitochondria in cells. The Rasip1-binding site in HEG1 contains a 9 residue sequence, deletion of which abrogates HEG1's ability to recruit Rasip1. HEG1 binds to a central region of Rasip1 and deletion of this domain eliminates Rasip1's ability to bind HEG1, to translocate to EC junctions, to inhibit ROCK activity, and to maintain EC junctional integrity. These studies establish that the binding of HEG1 to Rasip1 mediates Rap1-dependent recruitment of Rasip1 to and stabilization of EC cell-cell junctions

    Foothill: A Quasiconvex Regularization for Edge Computing of Deep Neural Networks

    Full text link
    Deep neural networks (DNNs) have demonstrated success for many supervised learning tasks, ranging from voice recognition, object detection, to image classification. However, their increasing complexity might yield poor generalization error that make them hard to be deployed on edge devices. Quantization is an effective approach to compress DNNs in order to meet these constraints. Using a quasiconvex base function in order to construct a binary quantizer helps training binary neural networks (BNNs) and adding noise to the input data or using a concrete regularization function helps to improve generalization error. Here we introduce foothill function, an infinitely differentiable quasiconvex function. This regularizer is flexible enough to deform towards L1L_1 and L2L_2 penalties. Foothill can be used as a binary quantizer, as a regularizer, or as a loss. In particular, we show this regularizer reduces the accuracy gap between BNNs and their full-precision counterpart for image classification on ImageNet.Comment: Accepted in 16th International Conference of Image Analysis and Recognition (ICIAR 2019

    The packing of granular polymer chains

    Full text link
    Rigid particles pack into structures, such as sand dunes on the beach, whose overall stability is determined by the average number of contacts between particles. However, when packing spatially extended objects with flexible shapes, additional concepts must be invoked to understand the stability of the resulting structure. Here we study the disordered packing of chains constructed out of flexibly-connected hard spheres. Using X-ray tomography, we find long chains pack into a low-density structure whose mechanical rigidity is mainly provided by the backbone. On compaction, randomly-oriented, semi-rigid loops form along the chain, and the packing of chains can be understood as the jamming of these elements. Finally we uncover close similarities between the packing of chains and the glass transition in polymers.Comment: 11 pages, 4 figure

    Transient Analysis of X-34 Pressurization System

    Get PDF
    Two transient operational modes of the X-34 pressurization system were analyzed using the ROCket Engine Transition Simulation (ROCETS) program. The first operational mode considers the normal operation. For the engine burn period, the required helium mass and pressure of each propellant tank were calculated. In the second case, the possibility of failure of the pressurization system solenoid valves, its consequence on the over-pressurization, and simultaneous operation of pressurization and vent/relief systems were evaluated
    • …
    corecore