1,370 research outputs found

    Sustainable production of glucaric acid from corn stover via glucose oxidation: An assessment of homogeneous and heterogeneous catalytic oxidation production routes

    Get PDF
    Glucaric acid is being used increasingly as a food additive, corrosion inhibitor, in deicing, and in detergents, and is also a potential starting material for the production of adipic acid, the key monomer for nylon-66. This work describes a techno-economic analysis of a potential bio-based process for the production of pure glucaric acid from corn stover (biomass). Two alternative routes for oxidation of glucose to glucaric acid are considered: via heterogeneous catalytic oxidation with air, and by homogeneous glucose oxidation using nitric acid. Techno-economic and lifecycle assessments (TEA, LCA) are made for both oxidation routes and cover the entire process from biomass to pure crystalline glucaric acid that can be used as a starting material for the production of valuable chemicals. This is the first TEA of pure glucaric acid production incorporating ion exchange and azeotropic evaporation below 50 °C to avoid lactone formation. The developed process models were simulated in Aspen Plus V9. The techno-economic assessment shows that both production routes are economically viable leading to minimum selling prices of glucaric acid of ∼2.53/kgand∼2.53/kg and ∼2.91/kg for the heterogeneous catalytic route and the homogeneous glucose oxidation route respectively. It is shown that the heterogeneous catalytic oxidation route is capable of achieving a 22% lower environmental impact than the homogeneous glucose oxidation route. Opportunities for further improvement in sustainable glucaric acid production at industrial scale are identified and discussed

    Enhancement of fluoride release from glass ionomer cement following a coating of silver fluoride

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.BACKGROUND: This study investigated the extent to which a coating of 10% silver fluoride (AgF) on discs of glass jonomer cements (GIGs) would enhance the release of fluoride ion into eluting solutions at varying pH. MATERIALS AND METHODS: Forty discs each of Fuji LX, Fuji VII and of Vitrebond were prepared in a plastic mould. Twenty discs of each material were coated for 30 seconds with a 10% solution of AgF. Five discs each of coated and uncoated material were placed individually in 4m1 of differing eluant solutions. The eluant solutions comprised deionized distilled water (DDW) and three separate acetate buffered solutions at pH 7, pH 5 and pH 3. After 30 minutes the discs were removed and placed in five vials containing 4m1 of the various solutions for a further 30 minutes. This was repeated for further intervals of time up to 216 hours, and all eluant solutions were stored. Fluoride concentrations in the eluant solutions were estimated using a fluoride specific electrode, with TISAB IV as a metal ion complexing and ionic concentration adjustment agent. Cumulative fluoride release patterns were determined from the incremental data. RESULTS: The coating of AgF greatly enhanced the level of fluoride ion release from all materials tested. Of the uncoated samples, Vitrehond released the greater concentrations of fluoride ion, followed by Fuji VII. However, cumulative levels of fluoride released from coated samples of the GICs almost matched those from coated Vitrebond. CONCLUSIONS: It was concluded that a coating of 10% AgF on GICs and a resin modified GIC greatly enhanced the concentration of fluoride released from these materials. This finding might be applied to improving protection against recurrent caries, particularly in high caries risk patients, and in the atraumatic restorative technique (ART) of restoration placement

    Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells

    Get PDF
    Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator

    Impact of foot-and-mouth disease on mastitis and culling on a large-scale dairy farm in Kenya

    Get PDF
    Foot and mouth disease (FMD) is a highly transmissible viral infection of cloven hooved animals associated with severe economic losses when introduced into FMD-free countries. Information on the impact of the disease in FMDV-endemic countries is poorly characterised yet essential for the prioritisation of scarce resources for disease control programmes. A FMD (virus serotype SAT2) outbreak on a large-scale dairy farm in Nakuru County, Kenya provided an opportunity to evaluate the impact of FMD on clinical mastitis and culling rate. A cohort approach followed animals over a 12-month period after the commencement of the outbreak. For culling, all animals were included; for mastitis, those over 18 months of age. FMD was recorded in 400/644 cattle over a 29-day period. During the follow-up period 76 animals were culled or died whilst in the over 18 month old cohort 63 developed clinical mastitis. Hazard ratios (HR) were generated using Cox regression accounting for non-proportional hazards by inclusion of time-varying effects. Univariable analysis showed FMD cases were culled sooner but there was no effect on clinical mastitis. After adjusting for possible confounders and inclusion of time-varying effects there was weak evidence to support an effect of FMD on culling (HR = 1.7, 95% confidence intervals [CI] 0.88-3.1, P = 0.12). For mastitis, there was stronger evidence of an increased rate in the first month after the onset of the outbreak (HR = 2.9, 95%CI 0.97-8.9, P = 0.057)

    Eliciting a predatory response in the eastern corn snake (Pantherophis guttatus) using live and inanimate sensory stimuli: implications for managing invasive populations

    Get PDF
    North America's Eastern corn snake (Pantherophis guttatus) has been introduced to several islands throughout the Caribbean and Australasia where it poses a significant threat to native wildlife. Invasive snake control programs often involve trapping with live bait, a practice that, as well as being costly and labour intensive, raises welfare and ethical concerns. This study assessed corn snake response to live and inanimate sensory stimuli in an attempt to inform possible future trapping of the species and the development of alternative trap lures. We exposed nine individuals to sensory cues in the form of odour, visual, vibration and combined stimuli and measured the response (rate of tongue-flick [RTF]). RTF was significantly higher in odour and combined cues treatments, and there was no significant difference in RTF between live and inanimate cues during odour treatments. Our findings suggest chemical cues are of primary importance in initiating predation and that an inanimate odour stimulus, absent of simultaneous visual and vibratory cues, is a potential low-cost alternative trap lure for the control of invasive corn snake populations

    Outcome of ATP-based tumor chemosensitivity assay directed chemotherapy in heavily pre-treated recurrent ovarian carcinoma

    Get PDF
    BACKGROUND: We wished to evaluate the clinical response following ATP-Tumor Chemosensitivity Assay (ATP-TCA) directed salvage chemotherapy in a series of UK patients with advanced ovarian cancer. The results are compared with that of a similar assay used in a different country in terms of evaluability and clinical endpoints. METHODS: From November 1998 to November 2001, 46 patients with pre-treated, advanced ovarian cancer were given a total of 56 courses of chemotherapy based on in-vitro ATP-TCA responses obtained from fresh tumor samples or ascites. Forty-four patients were evaluable for results. Of these, 18 patients had clinically platinum resistant disease (relapse < 6 months after first course of chemotherapy). There was evidence of cisplatin resistance in 31 patients from their first ATP-TCA. Response to treatment was assessed by radiology, clinical assessment and tumor marker level (CA 125). RESULTS: The overall response rate was 59% (33/56) per course of chemotherapy, including 12 complete responses, 21 partial responses, 6 with stable disease, and 15 with progressive disease. Two patients were not evaluable for response having received just one cycle of chemotherapy: if these were excluded the response rate is 61%. Fifteen patients are still alive. Median progression free survival (PFS) was 6.6 months per course of chemotherapy; median overall survival (OAS) for each patient following the start of TCA-directed therapy was 10.4 months (95% confidence interval 7.9-12.8 months). CONCLUSION: The results show similar response rates to previous studies using ATP-TCA directed therapy in recurrent ovarian cancer. The assay shows high evaluability and this study adds weight to the reproducibility of results from different centre

    Aequorin-based measurements of intracellular Ca(2+)-signatures in plant cells

    Get PDF
    Due to the involvement of calcium as a main second messenger in the plant signaling pathway, increasing interest has been focused on the calcium signatures supposed to be involved in the patterning of the specific response associated to a given stimulus. In order to follow these signatures we described here the practical approach to use the non-invasive method based on the aequorin technology. Besides reviewing the advantages and disadvantages of this method we report on results showing the usefulness of aequorin to study the calcium response to biotic (elicitors) and abiotic stimuli (osmotic shocks) in various compartments of plant cells such as cytosol and nucleus

    Primary cilia elongation in response to interleukin-1 mediates the inflammatory response

    Get PDF
    Primary cilia are singular, cytoskeletal organelles present in the majority of mammalian cell types where they function as coordinating centres for mechanotransduction, Wnt and hedgehog signalling. The length of the primary cilium is proposed to modulate cilia function, governed in part by the activity of intraflagellar transport (IFT). In articular cartilage, primary cilia length is increased and hedgehog signaling activated in osteoarthritis (OA). Here, we examine primary cilia length with exposure to the quintessential inflammatory cytokine interleukin-1 (IL-1), which is up-regulated in OA. We then test the hypothesis that the cilium is involved in mediating the downstream inflammatory response. Primary chondrocytes treated with IL-1 exhibited a 50 % increase in cilia length after 3 h exposure. IL-1-induced cilia elongation was also observed in human fibroblasts. In chondrocytes, this elongation occurred via a protein kinase A (PKA)-dependent mechanism. G-protein coupled adenylate cyclase also regulated the length of chondrocyte primary cilia but not downstream of IL-1. Chondrocytes treated with IL-1 exhibit a characteristic increase in the release of the inflammatory chemokines, nitric oxide and prostaglandin E2. However, in cells with a mutation in IFT88 whereby the cilia structure is lost, this response to IL-1 was significantly attenuated and, in the case of nitric oxide, completely abolished. Inhibition of IL-1-induced cilia elongation by PKA inhibition also attenuated the chemokine response. These results suggest that cilia assembly regulates the response to inflammatory cytokines. Therefore, the cilia proteome may provide a novel therapeutic target for the treatment of inflammatory pathologies, including OA

    A two-domain elevator mechanism for sodium/proton antiport

    Get PDF
    Sodium/proton (Na+/H+) antiporters, located at the plasma membrane in every cell, are vital for cell homeostasis1. In humans, their dysfunction has been linked to diseases, such as hypertension, heart failure and epilepsy, and they are well-established drug targets2. The best understood model system for Na+/H+ antiport is NhaA from Escherichia coli1, 3, for which both electron microscopy and crystal structures are available4, 5, 6. NhaA is made up of two distinct domains: a core domain and a dimerization domain. In the NhaA crystal structure a cavity is located between the two domains, providing access to the ion-binding site from the inward-facing surface of the protein1, 4. Like many Na+/H+ antiporters, the activity of NhaA is regulated by pH, only becoming active above pH 6.5, at which point a conformational change is thought to occur7. The only reported NhaA crystal structure so far is of the low pH inactivated form4. Here we describe the active-state structure of a Na+/H+ antiporter, NapA from Thermus thermophilus, at 3 Å resolution, solved from crystals grown at pH 7.8. In the NapA structure, the core and dimerization domains are in different positions to those seen in NhaA, and a negatively charged cavity has now opened to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to coordinate ion binding1, 8, 9 directly, a role supported here by molecular dynamics simulations. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the core domain, some 20° against the dimerization interface. We conclude that despite their fast transport rates of up to 1,500 ions per second3, Na+/H+ antiporters operate by a two-domain rocking bundle model, revealing themes relevant to secondary-active transporters in general
    • …
    corecore