8,875 research outputs found

    The implementation and use of Ada on distributed systems with reliability requirements

    Get PDF
    The issues involved in the use of the programming language Ada on distributed systems are discussed. The effects of Ada programs on hardware failures such as loss of a processor are emphasized. It is shown that many Ada language elements are not well suited to this environment. Processor failure can easily lead to difficulties on those processors which remain. As an example, the calling task in a rendezvous may be suspended forever if the processor executing the serving task fails. A mechanism for detecting failure is proposed and changes to the Ada run time support system are suggested which avoid most of the difficulties. Ada program structures are defined which allow programs to reconfigure and continue to provide service following processor failure

    Long time deviation from exponential decay: non-integral power laws

    Full text link
    Quantal systems are predicted to show a change-over from exponential decay to power law decay at very long times. Although most theoretical studies predict integer power-law exponents, recent measurements by Rothe et al. of decay luminescence of organic molecules in solution {Phys. Rev. Lett. 96 (2006) 163601} found non-integer exponents in most cases. We propose a physical mechanism, within the realm of scattering from potentials with long tails, which produces a continuous range of power law exponents. In the tractable case of the repulsive inverse square potential, we demonstrate a simple relation between the strength of the long range tail and the power law exponent. This system is amenable to experimental scrutiny

    Phase-change chalcogenide glass metamaterial

    Full text link
    Combining metamaterials with functional media brings a new dimension to their performance. Here we demonstrate substantial resonance frequency tuning in a photonic metamaterial hybridized with an electrically/optically switchable chalcogenide glass. The transition between amorphous and crystalline forms brings about a 10% shift in the near-infrared resonance wavelength of an asymmetric split-ring array, providing transmission modulation functionality with a contrast ratio of 4:1 in a device of sub-wavelength thickness.Comment: 3 pages, 3 figure

    Continued fraction solution of Krein's inverse problem

    Full text link
    The spectral data of a vibrating string are encoded in its so-called characteristic function. We consider the problem of recovering the distribution of mass along the string from its characteristic function. It is well-known that Stieltjes' continued fraction provides a solution of this inverse problem in the particular case where the distribution of mass is purely discrete. We show how to adapt Stieltjes' method to solve the inverse problem for a related class of strings. An application to the excursion theory of diffusion processes is presented.Comment: 18 pages, 2 figure

    Photoelectron diffraction investigation of the structure of the clean TiO2(110)(1×1) surface

    Get PDF
    The surface relaxations of the rutile TiO2(110)(1×1) clean surface have been determined by O 1 s and Ti 2p3∕2 scanned-energy mode photoelectron diffraction. The results are in excellent agreement with recent low-energy electron diffraction (LEED) and medium energy ion scattering (MEIS) results, but in conflict with the results of some earlier investigations including one by surface x-ray diffraction. In particular, the bridging O atoms at the surface are found to relax outward, rather than inward, relative to the underlying bulk. Combined with the recent LEED and MEIS results, a consistent picture of the structure of this surface is provided. While the results of the most recent theoretical total-energy calculations are qualitatively consistent with this experimental consensus, significant quantitative differences remain

    Convective Motion in a Vibrated Granular Layer

    Full text link
    Experimental results are presented for a vertically shaken granular layer. In the range of accelerations explored, the layer develops a convective motion in the form of one or more rolls. The velocity of the grains near the wall has been measured. It grows linearly with the acceleration, then the growing rate slows down. A rescaling with the amplitude of the wall velocity and the height of the granular layer makes all data collapse in a single curve. This can provide insights on the mechanism driving the motion.Comment: 10 pages, 5 figures submitted to Phys. Rev. Let

    The Diversity of Poisonous Plant Patches in the Arid Rangelands of Namaqualand, South Africa

    Get PDF
    The Namaqualand region in South Africa is part of the richest arid biodiversity hotspot in the world. Plant distribution and diversity here are impacted by various biophysical and anthropogenic factors. In these landscapes, poisonous plant patches, which pose serious threats to livestock, are widespread but their contribution to the regions biodiversity are not fully understood. This study assessed their plant diversity and compared its matrix. This study was conducted in the semi-arid to arid Steinkopf pastoral area located in Namaqualand where livestock is still herded daily. Twenty-five paired sites were selected based on the dominance of poisonous plants within the genera Tylecodon, Euphorbia and Adromischus. Within these sites, the number and abundance of different plant species were recorded and categorised into different plant functional types. Results showed a significant difference in Shannon Wiener plant diversity where poisonous plant patches displayed a greater diversity compared to sites sampled in the matrix. We interpret these findings as a consequence of herding in the region, where herders do not allow their animals to graze on or near poisonous plant patches. As such, palatable plants, which are absent or low in abundance in the surrounding landscape have a refuge where they can survive and set seed. This study provides evidence that the ethnobotanical knowledge of herders and palette of livestock are also major contributors to the spatial distribution and diversity of plant species in the arid biodiversity hotspot

    Is there a no-go theorem for superradiant quantum phase transitions in cavity and circuit QED ?

    Get PDF
    In cavity quantum electrodynamics (QED), the interaction between an atomic transition and the cavity field is measured by the vacuum Rabi frequency Ω0\Omega_0. The analogous term "circuit QED" has been introduced for Josephson junctions, because superconducting circuits behave as artificial atoms coupled to the bosonic field of a resonator. In the regime with Ω0\Omega_0 comparable to the two-level transition frequency, "superradiant" quantum phase transitions for the cavity vacuum have been predicted, e.g. within the Dicke model. Here, we prove that if the time-independent light-matter Hamiltonian is considered, a superradiant quantum critical point is forbidden for electric dipole atomic transitions due to the oscillator strength sum rule. In circuit QED, the capacitive coupling is analogous to the electric dipole one: yet, such no-go property can be circumvented by Cooper pair boxes capacitively coupled to a resonator, due to their peculiar Hilbert space topology and a violation of the corresponding sum rule

    Local states of free bose fields

    Full text link
    These notes contain an extended version of lectures given at the ``Summer School on Large Coulomb Systems'' in Nordfjordeid, Norway, in august 2003. They furnish a short introduction to the theory of quantum harmonic systems, or free bose fields. The main issue addressed is the one of local states. I will adopt the definition of Knight of ``strictly local excitation of the vacuum'' and will then state and prove a generalization of Knight's Theorem which asserts that finite particle states cannot be perfectly localized. It will furthermore be explained how Knight's a priori counterintuitive result can be readily understood if one remembers the analogy between finite and infinite dimensional harmonic systems alluded to above. I will also discuss the link between the above result and the so-called Newton-Wigner position operator thereby illuminating, I believe, the difficulties associated with the latter. I will in particular argue that those difficulties do not find their origin in special relativity or in any form of causality violation, as is usually claimed
    • 

    corecore