44 research outputs found

    Author\u27s Response to James J. Buckley

    Get PDF
    A response to James J. Buckley\u27s review of A Future for Truth: Evangelical Theology in a Postmodern World

    Book Reviews

    Get PDF

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Measurement of charged-particle multiplicities in gluon and quark jets in p(p)over-bar collisions at root s=1.8 TeV

    Get PDF
    We report the first largely model independent measurement of charged particle multiplicities in quark and gluon jets, N-q and N-g, produced at the Fermilab Tevatron in p (p) over bar collisions with a center-of-mass energy of 1.8 TeV and recorded by the Collider Detector at Fermilab. The measurements are made for jets with average energies of 41 and 53 GeV by counting charged particle tracks in cones with opening angles of θ(c)=0.28, 0.36, and 0.47 rad around the jet axis. The corresponding jet hardness Q=E-jetθ(c) varies in the range from 12 to 25 GeV. At Q=19.2 GeV, the ratio of multiplicities r=N-g/N-q is found to be 1.64± 0.17, where statistical and systematic uncertainties are added in quadrature. The results are in agreement with resummed perturbative QCD calculations

    Complications of Neonatal Intensive Care

    No full text

    One hundred and fifty-three diatomic molecules, molecular ions, and radicals of astrophysical interest

    No full text
    corecore