14,053 research outputs found

    Electrical phase change of CVD-grown Ge-Sb-Te thin film device

    No full text
    A prototype Ge-Sb-Te thin film phase-change memory device has been fabricated and reversible threshold and phase change switching demonstrated electrically, with a threshold voltage of 1.5 – 1.7 V. The Ge-Sb-Te thin film was fabricated by chemical vapour deposition (CVD) at atmospheric pressure using GeCl4, SbCl5, and Te precursors with reactive gas H2 at reaction temperature 780 °C and substrate temperature 250 °C. The surface morphology and composition of the CVD-grown Ge-Sb-Te thin film has been characterized by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The CVD-grown Ge-Sb-Te thin film shows promise for the phase change memory applications

    On the Preparation of Pure States in Resonant Microcavities

    Get PDF
    We consider the time evolution of the radiation field (R) and a two-level atom (A) in a resonant microcavity in terms of the Jaynes-Cummings model with an initial general pure quantum state for the radiation field. It is then shown, using the Cauchy-Schwarz inequality and also a Poisson resummation technique, that {\it perfect} coherence of the atom can in general never be achieved. The atom and the radiation field are, however, to a good approximation in a pure state ψ>Aψ>R|\psi >_A\otimes|\psi >_R in the middle of what has been traditionally called the ``collapse region'', independent of the initial state of the atoms, provided that the initial pure state of the radiation field has a photon number probability distribution which is sufficiently peaked and phase differences that do not vary significantly around this peak. An approximative analytic expression for the quantity \Tr[\rho^2_{A}(t)], where ρA(t)\rho_{A}(t) is the reduced density matrix for the atom, is derived. We also show that under quite general circumstances an initial entangled pure state will be disentangled to the pure state ψ>AR|\psi >_{A\otimes R}.Comment: 14 pages and 3 figure

    What People Are Writing About

    Get PDF

    A Research-Based Curriculum for Teaching the Photoelectric Effect

    Get PDF
    Physics faculty consider the photoelectric effect important, but many erroneously believe it is easy for students to understand. We have developed curriculum on this topic including an interactive computer simulation, interactive lectures with peer instruction, and conceptual and mathematical homework problems. Our curriculum addresses established student difficulties and is designed to achieve two learning goals, for students to be able to (1) correctly predict the results of photoelectric effect experiments, and (2) describe how these results lead to the photon model of light. We designed two exam questions to test these learning goals. Our instruction leads to better student mastery of the first goal than either traditional instruction or previous reformed instruction, with approximately 85% of students correctly predicting the results of changes to the experimental conditions. On the question designed to test the second goal, most students are able to correctly state both the observations made in the photoelectric effect experiment and the inferences that can be made from these observations, but are less successful in drawing a clear logical connection between the observations and inferences. This is likely a symptom of a more general lack of the reasoning skills to logically draw inferences from observations.Comment: submitted to American Journal of Physic

    Depth-averaged simulation of flows in asymmetric compound channels with smooth and rough narrow floodplains

    Get PDF
    Depth-averaged hydrodynamic models are predominantly used in numerical simulations of compound channel flows. One of the most popular methods for the depth-averaged simulation is Shiono and Knight method (SKM). This method accounts for the effects of bed friction, lateral turbulence and secondary flows, via three key parameters f, λ and Γ, respectively. The conventional expressions that are developed to calibrate these parameters are generally based on experiments in compound channels with wide floodplains. In this study, the application of SKM to an asymmetric compound channel with a narrow floodplain is examined in terms of the calibration requirements. Two sets of experiments that have smooth and rough floodplains are conducted and then simulated by SKM. In smooth floodplain cases, the results reveal that SKM model with the conventional calibration expressions of f, λ and Г is reasonably capable of predicting the distributions of depth-averaged velocity and boundary shear stress in the main channel. However, in the floodplain region, the expressions recommended for calibrating Г need to be modified to improve the predicted results in that region. In cases of the rough floodplain, the results indicate that only the values of λ in the main channel need to be changed from its conventional values to improve the predictions

    Evidence for a functional role of the pineal in bovines

    Get PDF
    Dat die epifise moontlik n regulerende invloed op die gonadotrofiese funksie van die adenohipofise ultoefen, is m.b.v. in vitro tegnieke ondersoek. Bykomstig, is n aaneenlopende stelsel ontwerp om die meganisme van die werking van die antionadotrofiese beginsel van die epifise te bestudeer, aangesien daar n direkte negatiewe terugvoer van hiposifiele LH op die hipothalamus voorgekom het toe adenohipofisiale en hipothalamiese weefsel gesamentlik gekweek is. Resultate het aangetoon dat die hormone van die epifise die vrystelling van die tersake hipothalamiese vrystellingsfaktore inhibeer, waardeur die afskeiding van LH deur die adenohipofise verminder word. Laastens toon die resultate aan dat die epifise die produksie van LH-inhiberende faktore geproduseer deur die hipothalamus, stimuleer. SUMMARY:The possibility that the pineal exerts a regulatory influence on the gonadotrophic function of the adenohypophysis was investigated using in vitro techniques. Additionally, since a direct negative feedback of pituitary LH onto the hypothalamus occured when adenohypophysical and hypothalamic tiisisues were incubated together, a continuous-flow system was devised to study the mechanisms of action of the pineal anti-gonadotrophic principles. Results demonstrated that the bovine pineal has marked anti-gonadotrophic properties in vitro. Data showed that the pineal hormones inhibited the release of the relevant hypothalamic release factor, thereby reducing secretion of LH from the adenohypophysis. Finally, results indicated that the pineal also stimulated the production by the hypothalamus of an LH-inhibitory factor

    Chalcogenide phase change materials for nanoscale switching

    No full text
    Since the demonstration of threshold switching in chalcogenide alloys over forty five years ago, phase change materials have been extensively investigated for switching and data storage applications. Phase change switching is based on the reversible change between crystalline and amorphous states of a material and in many chalcogenides this change of state takes place in nanoseconds

    Application of the Shiono and Knight Method in asymmetric compound channels with different side slopes of the internal wall

    Get PDF
    The Shiono and Knight Method (SKM) is widely used to predict the lateral distribution of depth-averaged velocity and boundary shear stress for flows in compound channels. Three calibrating coefficients need to be estimated for applying the SKM, namely eddy viscosity coefficient (λ), friction factor (f) and secondary flow coefficient (k). There are several tested methods which can satisfactorily be used to estimate λ, f. However, the calibration of secondary flow coefficients k to account for secondary flow effects correctly is still problematic. In this paper, the calibration of secondary flow coefficients is established by employing two approaches to estimate correct values of k for simulating asymmetric compound channel with different side slopes of the internal wall. The first approach is based on Abril and Knight (2004) who suggest fixed values for main channel and floodplain regions. In the second approach, the equations developed by Devi and Khatua (2017) that relate the variation of the secondary flow coefficients with the relative depth (β) and width ratio (α) are used. The results indicate that the calibration method developed by Devi and Khatua (2017) is a better choice for calibrating the secondary flow coefficients than using the first approach which assumes a fixed value of k for different flow depths. The results also indicate that the boundary condition based on the shear force continuity can successfully be used for simulating rectangular compound channels, while the continuity of depth-averaged velocity and its gradient is accepted boundary condition in simulations of trapezoidal compound channels. However, the SKM performance for predicting the boundary shear stress over the shear layer region may not be improved by only imposing the suitable calibrated values of secondary flow coefficients. This is because difficulties of modelling the complex interaction that develops between the flows in the main channel and on the floodplain in this region
    corecore