13 research outputs found

    Dirofilaria spp. And angiostrongylus vasorum: Current risk of spreading in central and northern europe

    Get PDF
    In the past few decades, the relevance of Dirofilaria immitis and Dirofilaria repens, causing cardiopulmonary and subcutaneous dirofilariosis in dogs and cats, and of Angiostrongylus vasorum, causing canine angiostrongylosis, has steadily increased in Central and Northern Europe. In this review, a summary of published articles and additional reports dealing with imported or autoch-thonous cases of these parasites is provided for Central (Austria, Czechia, Germany, Hungary, Lux-emburg, Poland, Slovakia, Slovenia, and Switzerland) and Northern (Denmark, Finland, Iceland, Norway, and Sweden) Europe. Research efforts focusing on Dirofilaria spp. and A. vasorum have varied by country, and cross-border studies are few. The housing conditions of dogs, pet move-ments, the spread of competent vectors, and climate change are important factors in the spread of these nematodes. Dogs kept outside overnight are a major factor for the establishment of Dirofilaria spp. However, the establishment of invasive, diurnal, synanthropic, competent mosquito vectors such as Aedes albopictus may also influence the establishment of Dirofilaria spp. The drivers of the spread of A. vasorum remain not fully understood, but it seems to be influenced by habitats shared with wild canids, dog relocation, and possibly climatic changes; its pattern of spreading appears to be similar in different countries. Both Dirofilaria spp. and A. vasorum merit further monitoring and research focus in Europe

    Overview of cattle diseases listed under category C, D or E in the animal health law for wich control programmes are in place within Europe

    Get PDF
    13 páginas, 5 figuras, 3 tablas.The COST action “Standardising output-based surveillance to control non-regulated diseases of cattle in the European Union (SOUND control),” aims to harmonise the results of surveillance and control programmes (CPs) for non-EU regulated cattle diseases to facilitate safe trade and improve overall control of cattle infectious diseases. In this paper we aimed to provide an overview on the diversity of control for these diseases in Europe. A non-EU regulated cattle disease was defined as an infectious disease of cattle with no or limited control at EU level, which is not included in the European Union Animal health law Categories A or B under Commission Implementing Regulation (EU) 2020/2002. A CP was defined as surveillance and/or intervention strategies designed to lower the incidence, prevalence, mortality or prove freedom from a specific disease in a region or country. Passive surveillance, and active surveillance of breeding bulls under Council Directive 88/407/EEC were not considered as CPs. A questionnaire was designed to obtain country-specific information about CPs for each disease. Animal health experts from 33 European countries completed the questionnaire. Overall, there are 23 diseases for which a CP exists in one or more of the countries studied. The diseases for which CPs exist in the highest number of countries are enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis, bovine viral diarrhoea and anthrax (CPs reported by between 16 and 31 countries). Every participating country has on average, 6 CPs (min–max: 1–13) in place. Most programmes are implemented at a national level (86%) and are applied to both dairy and non-dairy cattle (75%). Approximately one-third of the CPs are voluntary, and the funding structure is divided between government and private resources. Countries that have eradicated diseases like enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis and bovine viral diarrhoea have implemented CPs for other diseases to further improve the health status of cattle in their country. The control of non-EU regulated cattle diseases is very heterogenous in Europe. Therefore, the standardising of the outputs of these programmes to enable comparison represents a challenge.Peer reviewe

    Models including plasma levels of sphingomyelins and phosphatidylcholines as diagnostic and prognostic biomarkers of endometrial cancer.

    No full text
    In endometrial cancer, biomarkers for preoperative identification of patients with low risk for disease progression would enable stratification according to the extent of surgery needed, and would avoid the complications that can be associated with radical surgery. A panel of proteins, amino acids, enzymes, and miRNA has been investigated as potential biomarkers for endometrial cancer. At the time of the manuscript submission targeted metabolomics/lipidomics approaches have not been applied to biomarker research in endometrial cancer. Using electrospray ionization-tandem mass spectrometry we quantified 163 metabolites in 126 plasma samples (61 patients with endometrial cancer, 65 control patients). Three single phosphatidylcholines were identified with significantly decreased levels in patients with endometrial cancer. A diagnostic model was defined as the ratio between acylcamitine C16 and phosphatidylcholine PCae C40:1, the ratio between proline and tyrosine, and the ratio between the two phosphatidylcholines PCaa C42:0 and PCae C44:5; which provided sensitivity of 85.25%, specificity of 69.23%, and AUC of 0.837. Addition of smoking status further improved the constructed diagnostic model (AUC = 0.855). The presence of the major prognostic factors of deep myometrial invasion and lymphovascular invasion were also associated with altered metabolite concentrations. A prognostic model for deep myometrial invasion included the ratio between two hydroxysphingomyelins SMOH C14:1 and SMOH C24:1, and the ratio between two phosphatidylcholines PCaa C40:2 and PCaa C42:6, which provided sensitivity of 81.25%, specificity of 86.36%, and AUC of 0.857. The model for lymphovascular invasion included the ratio between two phosphatidylcholines PCaa C34:4 and PCae C38:3, and the ratio between acylcarnitine C16:2 and phosphatidylcholine PCaa C38:1, which provided sensitivity of 88.89%, specificity of 84.31%, and AUC of 0.935
    corecore