5 research outputs found

    Fabrication of a Hybrid Microfluidic System Incorporating both Lithographically Patterned Microchannels and a 3D Fiber-Formed Microfluidic Network

    Get PDF
    A device containing a 3D microchannel network (fabricated using sacrificial melt-spun microfibers) sandwiched between lithographically patterned microfluidic channels offers improved delivery of soluble compounds to a large volume compared to a simple stack of two microfluidic channel layers. With this improved delivery ability comes an increased fluidic resistance due to the tortuous network of small-diameter channels.United States. Army (Engineer Research and Development Center-Construction Engineering Research Laboratory (ERDC-CERL))National Institutes of Health (U.S.) (NIH grant 5F32EB011866)National Institutes of Health (U.S.) (NIH Grant 1K99EB013630)National Institutes of Health (U.S.) (NIH NHLBI grant 1 R21 HL106585-01)National Heart, Lung, and Blood Institute (NIH NHLBI grant 1 R21 HL106585-01

    In Situ Generated Nanosized Sulfide Ni-W Catalysts Based on Zeolite for the Hydrocracking of the Pyrolysis Fuel Oil into the BTX Fraction

    No full text
    The hydrocracking reaction of a pyrolysis fuel oil fraction using in situ generated nano-sized NiWS-sulfide catalysts is studied. The obtained catalysts were defined using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The features of catalytically active phase generation, as well as its structure and morphology were considered. The catalytic reactivity of in situ generated catalysts was evaluated using the hydrocracking reaction of pyrolysis fuel oil to obtain a light fraction to be used as a feedstock for benzene, toluene, and xylene (BTX) production. It was demonstrated that the temperature of 380 °C, pressure of 5 MPa, and catalyst-to-feedstock ratio of 4% provide for a target fraction (IPB −180 °C) yield of 44 wt %, and the BTX yield of reaching 15 wt %

    Development of microfluidics as endothelial progenitor cell capture technology for cardiovascular tissue engineering and diagnostic medicine

    No full text
    We have developed a unique microfluidic platform capable of capturing circulating endothelial progenitor cells (EPCs) by understanding surface chemistries and adhesion profiles. The surface of a variable-shear-stress microfluidic device was conjugated with 6 different antibodies [anti-CD34, -CD31, -vascular endothelial growth factor receptor-2 (VEGFR-2), -CD146, -CD45, and -von Willebrand factor (vWF)] designed to match the surface antigens on ovine peripheral blood-derived EPCs. Microfluidic analysis showed a shear-stress-dependent decrease in EPC adhesion on attached surface antigens. EPCs exhibited increased adhesion to antibodies against CD34, VEGFR-2, CD31, and CD146 compared to CD45, consistent with their endothelial cell-specific surface profile, when exposed to a minimum shear stress of 1.47 dyn/cm2. Bone-marrow-derived mesenchymal stem cells and artery-derived endothelial and smooth muscle cells were used to demonstrate the specificity of the EPC microfluidic device. Coated hematopoietic specific-surface (CD45) and granular vWF antibodies, as well as uncoated bare glass and substrate (1% BSA), were utilized as controls. Microfluidic devices have been developed as an EPC capture platform using immobilized antibodies targeted as EPC surface antigens. This EPC chip may provide a new and effective tool for addressing challenges in cardiovascular disease and tissue engineering.—Plouffe, B. D., Kniazeva, T., Mayer, J. E., Jr., Murthy, S. K., Sales, V. L. Development of microfluidics as endothelial progenitor cell capture technology for cardiovascular tissue engineering and diagnostic medicine
    corecore