44 research outputs found
VEGF-E enhances endothelialization and inhibits thrombus formation on polymeric surfaces
Thrombotic complications of long-terra blood-contacting devices can be avoided by formation of an endothelial cell layer on the blood-contacting surface. The endothelial cells form a bioactive boundary between the synthetic surface and blood, regulating ha haemostasis and inflammation. Biofunctionalization of synthetic blood-collecting surfaces is necessary to accommodate growth of endothelial cells. Vascular endothelial growth factor E (VEGF-F) or collagen I may stimulate endothelialization of a polymeric surface coating of a prototype small diameter vascular prosthesis. VEGF-E was produced hi Escherichia coli and could be easily purified in large quantities. Recombinant VEGF-E or purified collagen I was allowed to adsorb onto the polymeric surfaces and enhanced formation of an endothelial cell layer. Adsorption of VEGF-E was increased by the inclusion Of the anti-coagulant drug heparin in the polymeric coating. Collagen I adsorption induced rapid thrombin generation and increased platelet adhesion of surfaces with or without heparin. VEGF-E a( inhibited thrombus formation, and did not interfere with the anti-thrombogemic effect of heparin). Additionally, VEGF-E did not affect platelet adhesion. Adsorption of VEGF-E, especially on heparin containing surfaces, provides an economical strategy to improve endothelialization of cardiovascular implants without disturbing blood-compatibility
The Dictyostelium Bcr/Abr-related protein DRG regulates both Rac- and Rab-dependent pathways
Dictyostelium discoideum DdRacGap1 (DRG) contains both Rho-GEF and Rho-GAP domains, a feature it shares with mammalian Bcr and Abr. To elucidate the physiological role of this multifunctional protein, we characterized the enzymatic activity of recombinant DRG fragments in vitro, created DRG-null cells, and studied the function of the protein in vivo by analysing the phenotypic changes displayed by DRG-depleted cells and DRG-null cells complemented with DRG or DRG fragments. Our results show that DRG-GEF modulates F-actin dynamics and cAMP-induced F-actin formation via Rac1-dependent signalling pathways. DRG’s RacE-GAP activity is required for proper cytokinesis to occur. Additionally, we provide evidence that the specificity of DRG is not limited to members of the Rho family of small GTPases. A recombinant DRG-GAP accelerates the GTP hydrolysis of RabD 30-fold in vitro and our complementation studies show that DRG-GAP activity is required for the RabD-dependent regulation of the contractile vacuole system in Dictyostelium
A Bcr/Abr-related protein controls the organization of a tubolocisternal organelle, F-Actin dynamics, and cytokinesis in Dictyostelium
Dictyostelium discoideum DdRacGap1 (DRG) contains both Rho-GEF and Rho-GAP domains, a feature it shares with mammalian Bcr and Abr. To elucidate the physiological role of this multifunctional protein, we characterized the enzymatic activity of recombinant DRG fragments in vitro, created DRG-null cells, and studied the function of the protein in vivo by analysing the phenotypic changes displayed by DRG-depleted cells and DRG-null cells complemented with DRG or DRG fragments. Our results show that DRG-GEF modulates F-actin dynamics and cAMP-induced F-actin formation via Rac1-dependent signalling pathways. DRGs RacE-GAP activity is required for proper cytokinesis to occur. Additionally, we provide evidence that the specificity of DRG is not limited to members of the Rho family of small GTPases. A recombinant DRG-GAP accelerates the GTP hydrolysis of RabD 30-fold in vitro and our complementation studies show that DRG-GAP activity is required for the RabD-dependent regulation of the contractile vacuole system in Dictyostelium
Versatile Polymer Microspheres for Injection Therapy: Aspects of Fluoroscopic Traceability and Biofunctionalization
Synthesis and characterization of a series of novel microspheres featuring (i) radiopacity (i.e., clear fluoroscopic traceability) and (ii) an outer surface exposing aldehyde groups are reported. The aldehydes allowed us to tether proteins onto the particles' surface under mild conditions, under which the protein conformation and, hence, structural motifs for biorecognition are preserved. Essential monomer building blocks were (i) 4-iodobenzoyl-2-oxo-ethylmethacrylate (4-IEMA) for radiopacity and (ii) propenal for surface tethering of proteins. The particles demonstrated good X-ray visibility and cytocompatibility. Procedures to couple proteins onto the surface were optimized using fluorescent bovine serum albumin (FITC-BSA) or collagen (FITC-collagen). Furthermore, radiopaque microparticles with unlabeled bovine collagen type 1 were produced. The presence of immobilized collagen was verified with narrow-scan X-ray photoelectron spectroscopy. Fibroblasts readily adhere to and grow on the collagen-modified surfaces, whereas this was much less the case for the unmodified controls. The results led us to suggest that immobilized nondenatured collagen may transform filler particles from passive space-occupying objects to particles that cross-talk with surrounding tissues
Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms
Dynamins form a family of multidomain GTPases involved in endocytosis, vesicle trafficking and maintenance of mitochondrial morphology. In contrast to the classical switch GTPases, a force-generating function has been suggested for dynamins. Here we report the 2.3 Å crystal structure of the nucleotide-free and GDP-bound GTPase domain of Dictyostelium discoideum dynamin A. The GTPase domain is the most highly conserved region among dynamins. The globular structure contains the G-protein core fold, which is extended from a six-stranded β-sheet to an eight-stranded one by a 55 amino acid insertion. This topologically unique insertion distinguishes dynamins from other subfamilies of GTP-binding proteins. An additional N-terminal helix interacts with the C-terminal helix of the GTPase domain, forming a hydrophobic groove, which could be occupied by C-terminal parts of dynamin not present in our construct. The lack of major conformational changes between the nucleotide-free and the GDP-bound state suggests that mechanochemical rearrangements in dynamin occur during GTP binding, GTP hydrolysis or phosphate release and are not linked to loss of GDP
Antimicrobial and Anti-Thrombogenic Features Combined in Hydrophilic Surface Coatings for Skin-Penetrating Catheters. Synergy of Co-embedded Silver Particles and Heparin
Percutaneous (skin-penetrating) catheters such as central venous catheters (CVCs), are used ubiquitously in the treatment of critically ill patients, although it is known that the risks for serious complications, particularly bloodstream infection and thromboembolism, are high. Materials science and engineering offer important new perspectives regarding further improvement of CVCs. A promising approach is the use of synthetic biocompatible hydrogel coatings with both silver particles and heparin embedded therein. Such formulations combine the well-known broad-spectrum antimicrobial features of silver with the anticoagulant activity of immobilized heparin. Previous work revealed that heparin augments antimicrobial activity of silver, while maintaining its anticoagulant function. This study set out to investigate the synergy of heparin and silver in more detail. Exit-challenge tests, experiments on bacterial killing and adherence, as well as in vitro challenge tests with three Staphylococcus aureus strains (one reference strain, and two clinical isolates) consistently showed the synergistic effect. In addition, the impact of changing the coating's hydrophilicity, and changing the silver concentration in the. coatings, were examined. The experimental results, taken together and combined with data from the literature, point out that synergy of heparin and silver is best explained by binding of Ag+ ions to heparin within the swollen coating, followed by release of heparin-Ag+ complexes upon immersion of the coatings in an aqueous environment such as blood. Possible implications of this work regarding the development of improved/safer CVCs are briefly discussed