10 research outputs found
Recent trends in exposure to secondhand smoke in the United States population
<p>Abstract</p> <p>Background</p> <p>Previous research using the National Health and Nutrition Examination Surveys (NHANES) data documented a significant downward trend in secondhand smoke (SHS) exposure between 1988 and 2002. The objective of this study was to assess whether the downward trend in exposure continued from 2001 through 2006.</p> <p>Methods</p> <p>We analyzed data from the 2001-2006 NHANES to estimate exposure of nonsmokers to SHS. Geometric means of serum cotinine levels for all nonsmokers were computed.</p> <p>Results</p> <p>Overall serum cotinine levels (95% Confidence Intervals) in 2001-2002, 2003-2004, and 2005-2006 were 0.06 ng/mL (0.05-0.07), 0.07 ng/mL (0.06-0.09), and 0.05 ng/mL (0.05-0.06), respectively. Subgroup analysis by age, gender, and race/ethnicity groups showed similar trends in cotinine levels. Children, males, and non-Hispanic Blacks had higher cotinine levels than adults, females, and non-Hispanic Whites and Mexican Americans, respectively. Insignificant <it>P </it>values from the Wald test indicate that serum cotinine levels did not differ over time.</p> <p>Conclusions</p> <p>The long-term trend of declining exposure to SHS among nonsmokers appears to have leveled off. However, disparities noted in previous research persist today, with the young, non-Hispanic Blacks, and males experiencing higher levels of exposure.</p
Assessment of tidal volume and thoracoabdominal motion using volume and flow-oriented incentive spirometers in healthy subjects
The objective of the present study was to evaluate incentive spirometers using volume- (Coach and Voldyne) and flow-oriented (Triflo II and Respirex) devices. Sixteen healthy subjects, 24 ± 4 years, 62 ± 12 kg, were studied. Respiratory variables were obtained by respiratory inductive plethysmography, with subjects in a semi-reclined position (45Âș). Tidal volume, respiratory frequency, minute ventilation, inspiratory duty cycle, mean inspiratory flow, and thoracoabdominal motion were measured. Statistical analysis was performed with Kolmogorov-Smirnov test, t-test and ANOVA. Comparison between the Coach and Voldyne devices showed that larger values of tidal volume (1035 ± 268 vs 947 ± 268 ml, P = 0.02) and minute ventilation (9.07 ± 3.61 vs 7.49 ± 2.58 l/min, P = 0.01) were reached with Voldyne, whereas no significant differences in respiratory frequency were observed (7.85 ± 1.24 vs 8.57 ± 1.89 bpm). Comparison between flow-oriented devices showed larger values of inspiratory duty cycle and lower mean inspiratory flow with Triflo II (0.35 ± 0.05 vs 0.32 ± 0.05 ml/s, P = 0.00, and 531 ± 137 vs 606 ± 167 ml/s, P = 0.00, respectively). Abdominal motion was larger (P < 0.05) during the use of volume-oriented devices compared to flow-oriented devices (52 ± 11% for Coach and 50 ± 9% for Voldyne; 43 ± 13% for Triflo II and 44 ± 14% for Respirex). We observed that significantly higher tidal volume associated with low respiratory frequency was reached with Voldyne, and that there was a larger abdominal displacement with volume-oriented devices