12 research outputs found

    A VSA search for the extended Sunyaev-Zel'dovich Effect in the Corona Borealis Supercluster

    Full text link
    We present interferometric imaging at 33 GHz of the Corona Borealis supercluster, using the extended configuration of the Very Small Array. A total area of 24 deg^2 has been imaged, with an angular resolution of 11 arcmin and a sensitivity of 12 mJy/beam. The aim of these observations is to search for Sunyaev-Zel'dovich (SZ) detections from known clusters of galaxies in this supercluster and for a possible extended SZ decrement due to diffuse warm/hot gas in the intercluster medium. We measure negative flux values in the positions of the ten richest clusters in the region. Collectively, this implies a 3.0-sigma detection of the SZ effect. In the clusters A2061 and A2065 we find decrements of approximately 2-sigma. Our main result is the detection of two strong and resolved negative features at -70+-12 mJy/beam (-157+-27 microK) and -103+-10 mJy/beam (-230+-23 microK), respectively, located in a region with no known clusters, near the centre of the supercluster. We discuss their possible origins in terms of primordial CMB anisotropies and/or SZ signals related to either unknown clusters or to a diffuse extended warm/hot gas distribution. Our analyses have revealed that a primordial CMB fluctuation is a plausible explanation for the weaker feature (probability of 37.82%). For the stronger one, neither primordial CMB (probability of 0.33%) nor SZ can account alone for its size and total intensity. The most reasonable explanation, then, is a combination of both primordial CMB and SZ signal. Finally, we explore what characteristics would be required for a filamentary structure consisting of warm/hot diffuse gas in order to produce a significant contribution to such a spot taking into account the constraints set by X-ray data.Comment: 16 pages, 10 figures. Accepted in MNRA

    X-ray Polarization Observations of BL Lacertae

    Get PDF
    Blazars are a class of jet-dominated active galactic nuclei with a typical double-humped spectral energy distribution. It is of common consensus the Synchrotron emission to be responsible for the low frequency peak, while the origin of the high frequency hump is still debated. The analysis of X-rays and their polarization can provide a valuable tool to understand the physical mechanisms responsible for the origin of high-energy emission of blazars. We report the first observations of BL Lacertae performed with the Imaging X-ray Polarimetry Explorer ({IXPE}), from which an upper limit to the polarization degree ΠX<\Pi_X<12.6\% was found in the 2-8 keV band. We contemporaneously measured the polarization in radio, infrared, and optical wavelengths. Our multiwavelength polarization analysis disfavors a significant contribution of proton synchrotron radiation to the X-ray emission at these epochs. Instead, it supports a leptonic origin for the X-ray emission in BL Lac.Comment: 17 pages, 5 figures, accepted for publication in ApJ

    A High-resolution SZ View of the Warm-Hot Universe

    No full text
    We outline advances in the understanding of thermodynamic/kinematic properties of the warm-hot universe that can come through resolved measurements of the Sunyaev Zeldovich effects. Many advances will be enabled by new (sub)millimeter instrumentation on existing facilities, but truly transformative advances will require new mm/submm facilities

    Future Science Prospects for AMI

    No full text
    The Arcminute Microkelvin Imager (AMI) is a telescope specifically designed for high sensitivity measurements of low-surface-brightness features at cm-wavelength and has unique, important capabilities. It consists of two interferometer arrays operating over 13.5-18 GHz that image structures on scales of 0.5-10 arcmin with very low systematics. The Small Array (AMI-SA; ten 3.7-m antennas) couples very well to Sunyaev-Zel'dovich features from galaxy clusters and to many Galactic features. The Large Array (AMI-LA; eight 13-m antennas) has a collecting area ten times that of the AMI-SA and longer baselines, crucially allowing the removal of the effects of confusing radio point sources from regions of low surface-brightness, extended emission. Moreover AMI provides fast, deep object surveying and allows monitoring of large numbers of objects. In this White Paper we review the new science - both Galactic and extragalactic - already achieved with AMI and outline the prospects for much more.Comment: 20 pages, 11 figures; white paper. Revised author list, section IB, section IIIC2, reference
    corecore