1,225 research outputs found

    Gravitational Lensing in Clusters of Galaxies

    Get PDF
    Gravitational lensing in clusters of galaxies is an efficient tool to probe the mass distribution of galaxies and clusters, high redshift objects thanks to the gravitational amplification, and the geometry of the universe. We review some important aspects of cluster lensing and related issues in observational cosmology.Comment: invited review of the journal: Progress of Theoretical Physics (in press) 51 pages - 33 figure

    A Test of the Collisional Dark Matter Hypothesis from Cluster Lensing

    Get PDF
    Spergel & Steinhardt proposed the possibility that the dark matter particles are self-interacting, as a solution to two discrepancies between the predictions of cold dark matter models and the observations: first, the observed dark matter distribution in some dwarf galaxies has large, constant-density cores, as opposed to the predicted central cusps; and second, small satellites of normal galaxies are much less abundant than predicted. The dark matter self-interaction would produce isothermal cores in halos, and would also expel the dark matter particles from dwarfs orbiting within large halos. However, another inevitable consequence of the model is that halos should become spherical once most particles have interacted. Here, I rule out this model by the fact that the innermost regions of dark matter halos in massive clusters of galaxies are elliptical, as shown by gravitational lensing and other observations. The absence of collisions in the lensing cores of massive clusters implies that any dark matter self-interaction is too weak to have affected the observed density profiles in the dark-matter dominated dwarf galaxies, or to have eased the destruction of dwarf satellites in galactic halos. If sxs_x is the cross section and mxm_x the mass of the dark matter particle, then s_x/m_x < 10^{-25.5} \cm^2/\gev.Comment: to appear in ApJ, January 1 200

    Galaxy Galaxy Lensing as a Probe of Galaxy Dark Matter Halos

    Full text link
    Gravitational lensing has now become a popular tool to measure the mass distribution of structures in the Universe on various scales. Here we focus on the study of galaxy's scale dark matter halos with galaxy-galaxy lensing techniques: observing the shapes of distant background galaxies which have been lensed by foreground galaxies allows us to map the mass distribution of the foreground galaxies. The lensing effect is small compared to the intrinsic ellipticity distribution of galaxies, thus a statistical approach is needed to derive some constraints on an average lens population. An advantage of this method is that it provides a probe of the gravitational potential of the halos of galaxies out to very large radii, where few classical methods are viable, since dynamical and hydrodynamical tracers of the potential cannot be found at this radii. We will begin by reviewing the detections of galaxy-galaxy lensing obtained so far. Next we will present a maximum likelihood analysis of simulated data we performed to evaluate the accuracy and robustness of constraints that can be obtained on galaxy halo properties. Then we will apply this method to study the properties of galaxies which stand in massive cluster lenses at z~0.2. The main result of this work is to find dark matter halos of cluster galaxies to be significantly more compact compared to dark matter halos around field galaxies of equivalent luminosity, in agreement with early galaxy-galaxy lensing studies and with theoretical expectations, in particular with the tidal stripping scenario. We thus provide a strong confirmation of tidal truncation from a homogeneous sample of galaxy clusters. Moreover, it is the first time that cluster galaxies are probed successfully using galaxy-galaxy lensing techniques from ground based data.Comment: 8 pages, 5 figures, to appear in Moriond Proceedings, From Dark Halos to Ligh

    Deep Convolutional Neural Networks as strong gravitational lens detectors

    Full text link
    Future large-scale surveys with high resolution imaging will provide us with a few 10510^5 new strong galaxy-scale lenses. These strong lensing systems however will be contained in large data amounts which are beyond the capacity of human experts to visually classify in a unbiased way. We present a new strong gravitational lens finder based on convolutional neural networks (CNNs). The method was applied to the Strong Lensing challenge organised by the Bologna Lens Factory. It achieved first and third place respectively on the space-based data-set and the ground-based data-set. The goal was to find a fully automated lens finder for ground-based and space-based surveys which minimizes human inspect. We compare the results of our CNN architecture and three new variations ("invariant" "views" and "residual") on the simulated data of the challenge. Each method has been trained separately 5 times on 17 000 simulated images, cross-validated using 3 000 images and then applied to a 100 000 image test set. We used two different metrics for evaluation, the area under the receiver operating characteristic curve (AUC) score and the recall with no false positive (Recall0FP\mathrm{Recall}_{\mathrm{0FP}}). For ground based data our best method achieved an AUC score of 0.9770.977 and a Recall0FP\mathrm{Recall}_{\mathrm{0FP}} of 0.500.50. For space-based data our best method achieved an AUC score of 0.9400.940 and a Recall0FP\mathrm{Recall}_{\mathrm{0FP}} of 0.320.32. On space-based data adding dihedral invariance to the CNN architecture diminished the overall score but achieved a higher no contamination recall. We found that using committees of 5 CNNs produce the best recall at zero contamination and consistenly score better AUC than a single CNN. We found that for every variation of our CNN lensfinder, we achieve AUC scores close to 11 within 6%6\%.Comment: 9 pages, accepted to A&

    Lensed galaxies in Abell 370 I. Modeling the number counts and redshift distribution of background sources

    Get PDF
    We present new observations of the cluster-lens Abell 370: a deep HST/WFPC2 F675W image and ESO 3.6m spectroscopy of faint galaxies. These observations shade new lights on the statistical properties of faint lensed galaxies. In particular, we spectroscopically confirm the multiple image nature of the B2--B3 gravitational pair (Kneib et al. 1993), and determine a redshift of z=0.806 which is in very good agreement with earlier predictions. A refined mass model of the cluster core (that includes cluster galaxy halos) is presented, based on a number of newly identified multiple images. Following Bezecourt et al. (1998a), we combine the new cluster mass model with a spectrophotometric prescription for galaxy evolution to predict the arclets number counts and redshift distribution in the HST image. In particular, the ellipticity distribution of background sources is taken into account, in order to properly estimate the statistical number and redshift distribution of arclets. We show that the redshift distribution of arclets, and particularly its high redshift tail can be used as a strong constraint to disentangle different galaxy evolution scenario. A hierarchical model which includes a number density evolution is favored by our analysis. Finally, we compute the depletion curves in the faint galaxies number counts and discuss its wavelength dependence.Comment: 10 pages, Astronomy and Astrophysics in pres

    HST Observations of the Gravitationally Lensed Cloverleaf Broad Absorption Line QSO H1413+1143: Modeling the Lens

    Get PDF
    We investigate gravitational lens models for the quadruply-lensed Cloverleaf BAL QSO H1413+1143 based on the HST WFPC/WFPC2 astrometric and photometric data of the system by Turnshek et al. and the HST NICMOS-2 data by Falco et al. The accurate image positions and the dust-extinction-corrected relative amplifications, along with a possible detection of the lensing galaxy in the infrared, permit more accurate lens models than were previously possible. While more recent models are qualitatively consistent with the HST data, none of the previous models considered the dust-extinction-corrected relative amplifications of the image components. We use the power-law elliptical mass model to fit the HST data. We find that a single elliptical galaxy perturbed by an external shear can fit the image positions within the observational uncertainties; however, the predicted relative magnifications are only roughly consistent with the observational relative amplifications. We find that a primary galaxy combined with a secondary galaxy in the vicinity of the Cloverleaf or a cluster centered (south-)west of the Cloverleaf can fit both the image positions and relative amplifications within the observational uncertainties. We discuss future observations which could be used to test and/or further constrain lens models of the Cloverleaf.Comment: 23 pages (in aaspp.sty) including 5 tables and 3 figures, Accepted for publication in the Astrophysical Journa

    The Galaxy Octopole Moment as a Probe of Weak Lensing Shear Fields

    Get PDF
    In this paper, we introduce the octopole moment of the light distribution in galaxies as a probe of the weak lensing shear field. While traditional ellipticity estimates of the local shear derived from the quadrupole moment are limited by the width of the intrinsic ellipticity distribution of background galaxies, the dispersion in the intrinsic octopole distribution is expected to be much smaller, implying that the signal from this higher order moment is ultimately limited by measurement noise, and not by intrinsic scatter. We present the computation of the octopole moment and show that current observations are at the regime where the octopole estimates will soon be able to contribute to the overall accuracy of the estimates of local shear fields. Therefore, the prospects for this estimator from future datasets like the Advanced Camera for Survey and the Next Generation Space Telescope are very promising.Comment: 9 pages, 2 PostScript figures; Submitted to Astrophysical Journa
    • 

    corecore