685 research outputs found

    Switching of the magnetic order in CeRhIn5x_{5-x}Snx_{x} in the vicinity of its quantum critical point

    Full text link
    We report neutron diffraction experiments performed in the tetragonal antiferromagnetic heavy fermion system CeRhIn5x_{5-x}Snx_{x} in its (xx, TT) phase diagram up to the vicinity of the critical concentration xcx_c \approx 0.40, where long range magnetic order is suppressed. The propagation vector of the magnetic structure is found to be kIC\bf{k_{IC}}=(1/2, 1/2, klk_l) with klk_l increasing from klk_l=0.298 to klk_l=0.410 when xx increases from xx=0 to xx=0.26. Surprisingly, for xx=0.30, the order has changed drastically and a commensurate antiferromagnetism with kC\bf{k_{C}}=(1/2, 1/2, 0) is found. This concentration is located in the proximity of the quantum critical point where superconductivity is expected.Comment: 5 pages, 5 figures, submitted to Phys. Rev.

    Coupled SDW and Superconducting Order in FFLO State of CeCoIn5_5

    Full text link
    The mechanism of incommensurate (IC) spin-density-wave (SDW) order observed in the Flude-Ferrell-Larkin-Ovchinnikov (FFLO) phase of CeCoIn5_5 is discussed on the basis of new mode-coupling scheme among IC-SDW order, two superconducting orders of FFLO with B1g_{1{\rm g}} (dx2y2d_{x^{2}-y^{2}}) symmetry and π\pi-pairing of odd-parity. Unlike the mode-coupling schemes proposed by Kenzelmann et al, Sciencexpress, 21 August (2008), that proposed in the present Letter can offer a simple explanation for why the IC-SDW order is observed only in FFLO phase and the IC wave vector is rather robust against the magnetic field.Comment: 3pages, 1 figure, accepted for publication in J. Phys. Soc. Jpn., Vol.77 (2008), No.1

    Evolutionary games of condensates in coupled birth-death processes

    Get PDF
    Condensation phenomena arise through a collective behaviour of particles. They are observed in both classical and quantum systems, ranging from the formation of traffic jams in mass transport models to the macroscopic occupation of the energetic ground state in ultra-cold bosonic gases (Bose-Einstein condensation). Recently, it has been shown that a driven and dissipative system of bosons may form multiple condensates. Which states become the condensates has, however, remained elusive thus far. The dynamics of this condensation are described by coupled birth-death processes, which also occur in evolutionary game theory. Here we apply concepts from evolutionary game theory to explain the formation of multiple condensates in such driven-dissipative bosonic systems. We show that the vanishing of relative entropy production determines their selection. The condensation proceeds exponentially fast, but the system never comes to rest. Instead, the occupation numbers of condensates may oscillate, as we demonstrate for a rock-paper-scissors game of condensates

    Evolutionary games of condensates in coupled birth-death processes

    Get PDF
    Condensation phenomena arise through a collective behaviour of particles. They are observed in both classical and quantum systems, ranging from the formation of traffic jams in mass transport models to the macroscopic occupation of the energetic ground state in ultra-cold bosonic gases (Bose-Einstein condensation). Recently, it has been shown that a driven and dissipative system of bosons may form multiple condensates. Which states become the condensates has, however, remained elusive thus far. The dynamics of this condensation are described by coupled birth-death processes, which also occur in evolutionary game theory. Here we apply concepts from evolutionary game theory to explain the formation of multiple condensates in such driven-dissipative bosonic systems. We show that the vanishing of relative entropy production determines their selection. The condensation proceeds exponentially fast, but the system never comes to rest. Instead, the occupation numbers of condensates may oscillate, as we demonstrate for a rock-paper-scissors game of condensates

    Comment on ``Texture in the Superconducting Order Parameter of CeCoIn5_5 Revealed by Nuclear Magnetic Resonance''

    Full text link
    The study of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state has been of considerable recent interest. Below the temperature TT^* which is believed to be the transition temperature (TT) to the FFLO phase in CeCoIn5_5, K. Kakuyanagi et al. (Phys. Rev. Lett. 94, 047602 (2005)) reported a composite NMR spectrum with a tiny component observed at frequencies corresponding to the normal state signal. The results were interpreted as evidence for the emergence of an FFLO state. This result is inconsistent with two other NMR studies of V. F. Mitrovi{\'c} et al. (Phys. Rev. Lett. 97, 117002 (2006)) and B.-L. Young et al. (Phys. Rev. Lett. 98, 036402 (2007)). In this comment we show that the findings of K. Kakuyanagi et al. do not reflect the true nature of the FFLO state but result from excess RF excitation power used in that experiment.Comment: 1 page, to appear in PR

    ESR of YbRh2Si2 and 174YbRh2Si2 : local and itinerant properties

    Full text link
    Below the Kondo temperature the heavy Fermion compound YbRh2_{2}Si2_{2} shows a well defined Electron Spin Resonance (ESR) with local Yb3+^{3+} properties. We report a detailed analysis of the ESR intensity which gives information on the number of ESR active centers relative to the ESR of well localized Yb3+^{3+} in YPd3_3:Yb. The ESR lineshape is investigated regarding contributions from itinerant centers. From the ESR of monoisotopic 174^{174}YbRh2_{2}Si2_{2} we could exclude unresolved hyperfine contributions to the lineshape.Comment: 3 Figure

    Suppression of hidden order in URu2Si2 under pressure and restoration in magnetic field

    Full text link
    We describe here recent inelastic neutron scattering experiments on the heavy fermion compound URu2Si2 realized in order to clarify the nature of the hidden order (HO) phase which occurs below T_0 = 17.5 K at ambient pressure. The choice was to measure at a given pressure P where the system will go, by lowering the temperature, successively from paramagnetic (PM) to HO and then to antiferromagnetic phase (AF). Furthermore, in order to verify the selection of the pressure, a macroscopic detection of the phase transitions was also achieved in situ via its thermal expansion response detected by a strain gauge glued on the crystal. Just above P_x = 0.5 GPa, where the ground state switches from HO to AF, the Q_0 = (1, 0, 0) excitation disappears while the excitation at the incommensurate wavevector Q_1 = (1.4, 0, 0) remains. Thus, the Q_0 = (1, 0, 0) excitation is intrinsic only in the HO phase. This result is reinforced by studies where now pressure and magnetic field HH can be used as tuning variable. Above P_x, the AF phase at low temperature is destroyed by a magnetic field larger than H_AF (collapse of the AF Q_0 = (1, 0, 0) Bragg reflection). The field reentrance of the HO phase is demonstrated by the reappearance of its characteristic Q_0 = (1, 0, 0) excitation. The recovery of a PM phase will only be achieved far above H_AF at H_M approx 35 T. To determine the P-H-T phase diagram of URu2Si2, macroscopic measurements of the thermal expansion were realized with a strain gauge. The reentrant magnetic field increases strongly with pressure. Finally, to investigate the interplay between superconductivity (SC) and spin dynamics, new inelastic neutron scattering experiments are reported down to 0.4 K, far below the superconducting critical temperature T_SC approx 1.3 K as measured on our crystal by diamagnetic shielding.Comment: 5 pages, 7 figures, ICN 2009 conference proceeding

    Specific Heat Study of Non-Fermi Liquid Behavior in CeNi_2Ge_2: Anomalous Peak in Quasi-Particle Density-of-States

    Full text link
    To investigate the non-Fermi liquid (NFL) behavior in a nonalloyed system CeNi_2Ge_2, we have measured the temperature and field dependences of the specific heat C on a CeNi_2Ge_2 single crystal. The distinctive temperature dependence of C/T (~a-b*T^(1/2)) is destroyed in almost the same manner for both field directions of B//c-axis and B//a-axis. The overall behavior of C(T,B) and the low-temperature upturn in magnetic susceptibility can be reproduced, assuming an anomalous peak of the quasi-particle-band density-of-states (DOS) at the Fermi energy possessing (epsilon)^(1/2) energy dependence. Absence of residual entropy around T=0 K in B~0 T has been confirmed by the magnetocaloric effect measurements, which are consistent with the present model. The present model can also be applied to the NFL behavior in CeCu_{5.9}Au_{0.1} using a ln(epsilon)-dependent peak in the DOS. Possible origins of the peak in the DOS are discussed.Comment: 4 pages, LaTeX, using jpsj.sty, to be published in J. Phys. Soc. Jpn. 66 No. 10 (1997), 7 figures available at http://494-475.phys.metro-u.ac.jp/ao/ceni2ge2.htm

    Glucagonoma-induced acute heart failure

    Get PDF
    Neuroendocrine tumours (NETs) represent a broad spectrum of tumours, of which the serotonin-producing carcinoid is the most common and has been shown to cause right ventricular heart failure. However, an association between heart failure and NETs other than carcinoid has not been established so far. In this case report, we describe a 51-year-old patient with a glucagon-producing NET of the pancreas who developed acute heart failure and even cardiogenic shock despite therapy. Heart failure eventually regressed after initialising i.v. treatment with the somatostatin analogue octreotide. Chromogranin A as a tumour marker was shown to be significantly elevated, and it decreased with clinical improvement of the patient. The effects of long-time stimulation of glucagon on the myocardium have not been studied yet; however, sarcoplasmic reticulum calcium leak can be discussed as a possible mechanism for glucagon-induced heart failure

    Evidence for unconventional superconducting fluctuations in heavy-fermion compound CeNi2Ge2

    Full text link
    We present evidence for unconventional superconducting fluctuations in a heavy-fermion compound CeNi2_2Ge2_2. The temperature dependence of the 73^{73}Ge nuclear-spin-lattice-relaxation rate 1/T11/T_1 indicates the development of magnetic correlations and the formation of a Fermi-liquid state at temperatures lower than TFL=0.4T_{\rm FL}=0.4 K, where 1/T1T1/T_1T is constant. The resistance and 1/T1T1/T_1T measured on an as-grown sample decrease below Tconset=0.2T_{\rm c}^{\rm onset} = 0.2 K and TcNQR=0.1T_{\rm c}^{\rm NQR} = 0.1 K, respectively; these are indicative of the onset of superconductivity. However, after annealing the sample to improve its quality, these superconducting signatures disappear. These results are consistent with the emergence of unconventional superconducting fluctuations in close proximity to a quantum critical point from the superconducting to the normal phase in CeNi2_2Ge2_2.Comment: 4pages,5figures,to appear in J. Phys. Soc. Jp
    corecore