195 research outputs found

    Centrifuge modelling of the influence of slope height on the seismic performance of rooted slopes

    Get PDF
    This paper presents an investigation into the influence of slope height on the role of vegetation to improve seismic slope stability. Dynamic centrifuge modelling was used to test six slope models with identical soil properties and model slope geometry within different centrifugal acceleration fields (10g and 30g, respectively) representing 1:10 and 1:30 scale slopes, that is, slopes of different height at prototype scale. A three-dimensional (3D) root cluster analogue representing a tap-root system, with root area ratio, root distribution and root length representative of a 1:10 and 1:30 scale tree root cluster (of rooting depth 1·5 m at prototype scale) was modelled using 3D printing techniques. A sequence of earthquake ground motions was applied to each model. The influences of filtering out low-frequency components of the earthquake motion, such as was necessitated at the lowest scaling factor owing to the practical limitations of the earthquake simulator, on dynamic amplification of motions within the slopes and the seismically induced slip, were first revealed. Subsequently, the effects of slope height on acceleration and deformation response of vegetated slopes were illustrated. It was found that the beneficial effects of roots on improving the seismic performance varied with the height of the slope. As an individual engineering technique for slope stabilisation, root reinforcement will not be such an effective solution for taller slopes, and complementary hard engineering methods (e.g. piles, retaining walls) will be necessary. For slopes of smaller heights (e.g. low-height embankments along transport infrastructure), however, vegetation appears to represent a highly effective method of reducing seismic slip. </jats:p

    Influence of modelling approach for reinforced concrete underground structures, with application to the CMS cavern at CERN

    Get PDF
    Representative modelling of reinforced concrete (RC) components in underground structures is essential for accurate assessment of structural performance (deformations and internal forces) within numerical simulations. This paper examines the implications of selecting different structural modelling approaches within the seismic (dynamic) finite element analysis of a buried structure of complex shape, using the CMS (Compact Muon Solenoid) Detector Cavern of the Large Hadron Collider in Geneva, Switzerland, as a case study. Two alternate modelling approaches were employed to model the cavern lining: (i) a composite continuum approach, with the concrete and embedded reinforcement being explicitly modelled; and (ii) the use of a nonlinear elasto-plastic plate element. The pre-earthquake ground initial conditions were determined through simulation of the construction and detector installation operations consistent with field measurements from extensometers and internal survey of floor deformations. The results demonstrate the importance of adopting a non-linear continuum modelling approach in representing the RC lining under strong shaking events to avoid under-prediction of seismic actions at locations of potential seismically induced damage. Such an approach will be essential in 3D problems where multi-axial dynamically varying stresses are applied on the RC section. Finally, it offers a realistic approach in representing structures of complex shape and that contains volume and thick elements

    Influence of modelling approach for reinforced concrete underground structures, with application to the CMS cavern at CERN

    Get PDF
    Representative modelling of reinforced concrete (RC) components in underground structures is essential for accurate assessment of structural performance (deformations and internal forces) within numerical simulations. This paper examines the implications of selecting different structural modelling approaches within the seismic (dynamic) finite element analysis of a buried structure of complex shape, using the CMS (Compact Muon Solenoid) Detector Cavern of the Large Hadron Collider in Geneva, Switzerland, as a case study. Two alternate modelling approaches were employed to model the cavern lining: (i) a composite continuum approach, with the concrete and embedded reinforcement being explicitly modelled; and (ii) the use of a nonlinear elasto-plastic plate element. The pre-earthquake ground initial conditions were determined through simulation of the construction and detector installation operations consistent with field measurements from extensometers and internal survey of floor deformations. The results demonstrate the importance of adopting a non-linear continuum modelling approach in representing the RC lining under strong shaking events to avoid under-prediction of seismic actions at locations of potential seismically induced damage. Such an approach will be essential in 3D problems where multi-axial dynamically varying stresses are applied on the RC section. Finally, it offers a realistic approach in representing structures of complex shape and that contains volume and thick elements

    Centrifuge testing of a bridge pier on a rocking isolated foundation supported on unconnected piles

    Get PDF
    Volume conduction models can help in acquiring knowledge about the distribution of the electric field induced by transcranial magnetic stimulation. One aspect of a detailed model is an accurate description of the cortical surface geometry. Since its estimation is difficult, it is important to know how accurate the geometry has to be represented. Previous studies only looked at the differences caused by neglecting the complete boundary between cerebrospinal fluid (CSF) and grey matter (Thielscher et al 2011 NeuroImage 54 234-43, Bijsterbosch et al 2012 Med. Biol. Eng. Comput. 50 671-81), or by resizing the whole brain (Wagner et al 2008 Exp. Brain Res. 186 539-50). However, due to the high conductive properties of the CSF, it can be expected that alterations in sulcus width can already have a significant effect on the distribution of the electric field. To answer this question, the sulcus width of a highly realistic head model, based on T1-, T2- and diffusion-weighted magnetic resonance images, was altered systematically. This study shows that alterations in the sulcus width do not cause large differences in the majority of the electric field values. However, considerable overestimation of sulcus width produces an overestimation of the calculated field strength, also at locations distant from the target location

    Comparison of new <i>in situ </i>root-reinforcement measuring devices to existing techniques

    Get PDF
    Mechanical root-reinforcement is difficult to quantify. Existing in-situ methods are cumbersome, while modelling requires parameters which are difficult to acquire. In this paper, two new in-situ measurement devices are introduced ('cork screw' and 'pin vane') and their performance is compared to field vane and laboratory direct shear strength measurements in fallow and rooted soil. Both new methods show a close correlation with field vane readings in fallow soil. Tests in reinforced soil show that both new methods can be installed without significant root disturbance. The simplicity of both new methods allows for practical in-situ use and both can be used to study soil stress-strain behaviour, thus addressing some major limitations in existing methodologies for characterising rooted soil.</p

    Effect of root spacing on interpretation of blade penetration tests-full-scale physical modelling

    Get PDF
    The spatial distribution of plant roots is an important parameter when the stability of vegetated slopes is to be assessed. Previous studies in both laboratory and field conditions have shown that a penetrometer adapted with a blade-shaped tip can be used to detect roots from sudden drops in penetrometer resistance. Such drops can be related to root properties including diameter, stiffness and strength using simpleWinkler foundation models, thereby providing a field instrument for rapid quantification of root properties and distribution. While this approach has proved useful for measuring single widely-spaced roots, it has not previously been determined how the penetrometer response changes as a result of roots being in close proximity. Therefore in this study 1-g physical modelling (at 1:1 scale) was conducted to study the effect of vertical root spacing using horizontal, straight 3D-printed root analogues. Results showthatwhen roots are closely spaced, there is significant interaction between them, resulting in higher apparent root displacements to failure and an increased amount of energy being dissipated. This preliminary work shows that the interpretive models used to analyse the penetrometer trace require further development to account for root-soil-root interactions in densely rooted soil.</p
    • …
    corecore