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Newmark sliding block model for predicting the seismic performance of vegetated slopes 1 

T. Liang & J. A. Knappett
1
 2 

Abstract:  3 

This paper presents a simplified procedure for predicting the seismic slip of a vegetated slope. This is important 4 

for more precise estimation of the hazard associated with seismic landslip of naturally vegetated slopes, and also 5 

as a design tool for determining performance improvement when planting is to be used as a protective measure. 6 

The analysis procedure consists of two main components. Firstly, Discontinuity Layout Optimisation (DLO) 7 

analysis is used to determine the critical seismic slope failure mechanism and estimate the corresponding yield 8 

acceleration of a given slope. In DLO analysis, a modified rigid perfectly plastic (Mohr–Coulomb) model is 9 

employed to approximate small permanent deformations which may accrue in non-associative materials when 10 

subjected to ground motions with relatively low peak ground acceleration. The contribution of the vegetation to 11 

enhancing the yield acceleration is obtained via subtraction of the fallow slope yield acceleration. The second 12 

stage of the analysis incorporates the vegetation contribution to the slope’s yield acceleration from DLO into 13 

modified limit equilibrium equations to further account for the geometric hardening of the slope under 14 

increasing soil movement. Thereby, the method can predict the permanent settlement at the crest of the slope via 15 

a slip-dependent Newmark sliding block approach. This procedure is validated against a series of centrifuge 16 

tests to be highly effective for both fallow and vegetated slopes and is subsequently used to provide further 17 

insights into the stabilising mechanisms controlling the seismic behaviour of vegetated slopes. 18 

Key words: Analytical modelling; Centrifuge modelling; Dynamics; Earthquakes; Sand; Slopes; Vegetation; 19 

Ecological Engineering 20 

 21 

1. Introduction  22 

The use of vegetation to reinforce soil on landslip-prone slopes is an ecologically and economically beneficial 23 

sustainable alternative to traditional civil engineering reinforcement techniques [1-3]. The mechanical benefit of 24 

roots on slope stability has been commonly accepted. Many analytical models have been developed, based on 25 

small site in-situ investigation and laboratory tests, to quantify this benefit and predict its impacts on global 26 

slope behaviour [4-6]. However, to the best of authors' knowledge, all of these analytical models have been 27 

developed for static/monotonic use. The impacts of vegetation on seismic performance of slopes subjected to 28 

earthquake ground motions are generally overlooked in preliminary design. As observed by recent physical 29 

modelling studies [7-9], vegetation could highly improve the seismic performance of slopes (in terms of crest 30 

settlement) especially for the case of slopes of modest height (e.g. small embankments). As a result, ignoring the 31 

benefit of vegetation may lead to a conservative result and the use of more extensive remedial methods (e.g. 32 
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piling, soil nailing) which may not be necessary. Analytical models which incorporate vegetation are therefore 33 

required for use in seismic analysis and design [10].  34 

Eurocode 8 [11], which guides the design and construction of buildings and civil engineering works in 35 

seismic regions within Europe, recommends the use of established methods of dynamic analysis, such as Finite 36 

Elements (FE) or rigid block models or by simplified pseudo-static methods to determine the response of slopes 37 

to a design earthquake. Given the computational expense of the FE method, a complimentary simplified 38 

procedure would be highly useful in preliminary design, particularly for identifying key cases for further 39 

detailed study via FE. While compared with pseudo-static methods, Newmark sliding block models [12], which 40 

as displacement-based methods, are aligned with modern trends in performance-based design and assessment, 41 

potentially offer a useful basis for such a method, especially given their popularity. Recently, such methods have 42 

been developed to incorporate the large displacement effects of continued sliding in hardening the slope 43 

response [13], and also to incorporate the stabilising effects of a row of discretely spaced piles [14].  44 

In this paper, an improved sliding-block procedure is developed to predict the seismic performance of 45 

vegetated slopes. The procedure consists of two components. Firstly, an analysis using Discontinuity Layout 46 

Optimisation (DLO [15]) is used to detect the critical seismic failure mechanism for slopes incorporating zones 47 

of enhanced strength where the roots are present (i.e. the lowest upper-bound mechanism using a virtual work 48 

approach and optimisation routine) and predict the contribution to the yield acceleration of a given slope 49 

configuration provided by the roots. This derived yield acceleration information is then incorporated into a 50 

modified limit equilibrium formulation for a sliding block to further account for the geometric hardening of the 51 

slope as it flattens with slip, allowing the permanent settlement at the crest of the slope to be estimated. The 52 

procedure is then validated against a database of centrifuge test results reported in [8], and subsequently used to 53 

reveal further insights into the seismic behaviour of vegetated slopes. 54 

 55 

2. Discontinuity Layout Optimisation  56 

2.1 Fundamental theory  57 

Discontinuity Layout Optimisation [15] is a recently developed numerical limit analysis procedure which can be 58 

applied to a wide range of geotechnical stability problems involving cohesive and/or frictional soils. Compared 59 

with the more traditional Finite Element Limit Analysis (FELA) technique which requires discretising the 60 

problem into solid (finite) elements, DLO employs rigorous mathematical optimisation techniques to identify a 61 

critical layout of lines of discontinuity which form a kinematically-admissible collapse mechanism. These lines 62 

of discontinuity are typically ‘slip-lines’ in planar geotechnical stability problems and define the boundaries 63 

between moving rigid blocks of material which form the mechanism of collapse. Associated with this 64 

mechanism is a collapse load factor, determined via the principle of virtual work, which is an upper bound on 65 

the ‘exact’ load factor according to formal plasticity theory. The core matrix formulation for seismic problems is 66 

given in Appendix A, repeated from [16] for completeness. 67 



2.2 Constitutive modelling of soil 68 

DLO calculations were carried out using the software LimitState:GEO, v.2.0, which involves an adaptive 69 

solution procedure described by Gilbert & Tyas (2003) [17] to significantly reduce memory requirements and 70 

the time (of the order of a few minutes) to reach an optimised solution. The geometry of a vegetated slope 71 

problem is shown schematically in Fig.1. The root-soil matrix is modelled using smeared zones with additional 72 

representative shear strength (here incorporated into the soil behaviour as additional cohesion) reflecting the 73 

contribution of the roots, which can vary with depth. The maximum rooting depth is denoted as hr and the lateral 74 

spread of the roots by the Critical Rooting Zone (CRZ), essentially a diameter which defines the zone of 75 

dominant structural roots which have been found to provide more than 80% of the total root mass. The two-76 

dimensional (2D) plane strain model assumes that the input additional representative shear strength from the 77 

roots can be modelled as an equivalent amount per metre length of the slope, accounting for the plant spacing in 78 

the out-of-plane direction. 79 

The current implementation of DLO uses a rigid-plastic material model based on the Mohr–Coulomb 80 

model with an associative flow rule for frictional materials, and this was used in the modelling presented herein. 81 

Four soil input parameters were required, namely: unit weights under saturated and dry condition and two 82 

measurable effective stress strength parameters, ' and c'. Although associative flow is implicitly assumed in 83 

this model, such an assumption will overestimate the yield acceleration compared to the true non-associative 84 

behaviour in the soil due to an overestimation of the amount of dilation, and therefore potentially overestimate 85 

the yield acceleration resulting in an under-prediction of seismic slip. Hence non-associative flow should be 86 

considered pre-input [18]. As the soil model is rigid-plastic, if the strength is defined by the peak friction angle 87 

it will imply that slip will not occur until peak strength is exceeded, even though the soil may be substantially 88 

into its non-linear elasto-plastic deformation range below this level, and therefore able to accrue small 89 

permanent displacements with repetitive cyclic loading. To overcome these limitations an approximate 90 

procedure is proposed below (and validated against centrifuge data later on) to account for non-associativity and 91 

pre-peak accumulation of (small) deformations via an equivalent associative analysis with a mobilised friction 92 

angle ('mob) [19] and corresponding mobilised yield acceleration for cases where the induced seismic shear 93 

stress is less than the peak shear strength of the soil to allow improved predictions of small amounts of 94 

permanent displacement in smaller earthquakes.  95 

2.3 Influence of non-associativity 96 

Here, non-associative flow was modelled by adjusting the value of ' = 'mob used in the analyses from the 97 

actual value for the true non-associative behaviour to an equivalent associative value  
as suggested in [20] and 98 

previously used for other seismic limit analysis problems (e.g.[21],[22]), given by: 99 
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where 'mob is a mobilised friction angle which takes a value between a lower bound of 'cs at critical state and 101 

an upper bound of 'pk if the seismically induced shear stresses would be sufficient to exceed the peak soil 102 

strength. Considering the limiting case of 'mob = 'pk , 'pk can be written in terms of dilation angle ' as: 103 

''' 8.0  
cspk

                                                   (2) 104 

for plane strain after [23]; 'pk can also be given as a function of the relative dilation index IR  : 105 

Rcspk
AI '

                                                      (3) 106 

where A is a dimensionless factor to account for strain type (A = 5 for plane strain) and IR is given by: 107 
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where ID is the relative density of the soil, Q, R are fitting parameters that depend on the intrinsic sand 109 

characteristics and p' is the mean confining stress, which can be expressed in terms of the vertical and horizontal 110 

effective stresses using: 111 
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where '

v  is the vertical effective stress, '

h  is the horizontal effective stress, and K0 is the earth pressure 113 

coefficient at rest , which for normally consolidated soils may be estimated using: 114 

cs
K  sin1

0
                                               (6) 115 

Q and R can be simplified to 10 and 1 when 0 < IR < 4, while at very low confining stress level (IR > 4), Q and R 116 

can be calculated as 'ln75.01.7 p (for plane strain) and 1, respectively [24].  117 

2.4 Mobilised friction angle accounting for pre-peak deformations  118 

The dilation angle utilised by this approach and expressed via Eq. (2) is the maximum dilation angle, 119 

corresponding to a capping yield surface. The state of soil is very strongly dependent on its stress history 120 

[25],[26] and the shape of the yield surface is determined by the maximum stress the soil has ever experienced. 121 

For smaller earthquake motions, the magnitude of the induced shear stresses may not be sufficient to push the 122 

effective stress path within the soil to the capping yield surface, though there may be accumulation of small 123 

plastic strains due to inelastic stress-strain response of the soil pre-failure. This is here represented by an 124 

expanding yield surface (described by 'mob) for the non-associative soil, which the induced shear stresses from 125 



the combined effects of the ground slope and the earthquake will just reach. It is then assumed that Eq. (2) is 126 

also valid below peak strength, i.e.: 127 

             
mobcsmob

  8.0                                         (7) 128 

Eq. (1) is then used to approximate the non-associative values of 'mob and 'mob as an equivalent associative 129 

value. When a ground motion is large enough to push the mobilised yield surface to the capping yield surface 130 

the soil will dilate to the maximum (capping) condition and any further increase in ground acceleration and 131 

seismically induced shear stress will not further change the shape of yield surface. Compared to recent previous 132 

sliding block models ([13],[22]) which considered strong ground motions with peak accelerations large enough 133 

to easily exceed the peak strength, the use of 'mob here extends the range of applicability to smaller ground 134 

motions, a feature which will be useful in the later validation against centrifuge data.  135 

To incorporate the model of soil behaviour described above into a slope stability problem, it is necessary to 136 

estimate the peak induced cyclic shear stresses in the ground such that the mobilised friction angle 'mob can be 137 

estimated. For a slip plane at depth z beneath the slope surface (fallow soil) and parallel to it (i.e. infinite slope 138 

failure), under uniaxial horizontal shaking (i.e. plane strain – see Fig.2), the applied down slope shear stress 139 

τapplied is: 140 

 2coscossin zkz
happlied

                                           (8) 141 

where the first term relates to the static shear stress due to the ground slope, and the second term relates to the 142 

additional peak dynamic shear stress induced by the earthquake, (here, γ is the soil unit weight, β is the slope 143 

angle and kh is the horizontal seismic acceleration coefficient). The effective normal stress σ' on the same slip 144 

plane is: 145 

uzkz
h

  cossincos2                                                        (9) 146 

where u is pore water pressure. In dry cohesionless soil, as modelled in the centrifuge testing described later, u = 147 

0. Then the mobilised friction angle (for a cohesionless soil) may be estimated as: 148 
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or alternatively, 150 

 
hmob

k1tan                                     (11) 151 

Eq. (11) is applicable while 'cs < 'mob < 'pk. 152 

The model described in this section is shown schematically for the simplified case of c' = 0, u = 0 in Fig.3, 153 

with some indicative cyclic loading shown in the positive quadrant of a shear stress-strain plot in Fig.3 (b)-(d). 154 

The model essentially assumes that for the purposes of predicting plastic slip, a soil with a dilative peak strength 155 



can be idealised as being elastic, accruing no plastic strain while 'mob < 'cs (Fig.3(b)).  This captures the slope 156 

being initially stable under static conditions and demonstrates that the slope can sustain a small ground motion 157 

(low kh) without inducing slip. Once 'mob > 'cs the model assumes that the soil will be well into its non-linear 158 

elasto-plastic range, even though 'mob < 'pk, with Eq. (11) describing the value of 'mob as a function of the 159 

initial slope angle (β) and the size of the earthquake shaking (kh) (Fig.3(c)). The form of Eq. (11) implies that 160 

stronger earthquakes will induce greater slip for a given slope angle. Once 'mob = 'pk , the model reduces to a 161 

conventional slip model based on the soil initially having its peak strength. Therefore the key new feature of this 162 

model is that a low-to-moderate strength earthquake can now potentially induce some slip within a sliding block 163 

model. Previous models, even those with sophisticated strain-softening behaviour (e.g.[13][27]) required the 164 

peak strength to be exceeded before any amount of slip could take place, even if it subsequently softened rapidly 165 

to the critical state condition, and therefore could potentially predict zero slip in cases where the earthquake is 166 

moderately strong and inducing a highly non-linear elasto-plastic response within the soil. The new model 167 

therefore potentially makes sliding block analysis applicable to a wider range of earthquake motions.  168 

2.5 Geometric-hardening and vegetation 169 

In the forgoing section, it has been proposed that through the use of smeared zones with additional shear 170 

strength from the roots (Fig.1), and through careful selection of mobilised friction angles, DLO could be used to 171 

determine the critical failure mechanism and corresponding yield acceleration in vegetated slopes over a wide 172 

range of input motion strengths. However, one drawback of the DLO procedure (and indeed all limit analysis-173 

type procedures for seismic problems) is that it does not immediately provide a direct measure of slope 174 

performance (e.g. seismically-induced slip) and only provides a measure of the instantaneous yield acceleration 175 

for the initial pre-earthquake slope conditions and therefore cannot account for an increase of yield acceleration 176 

due to geometric hardening of the slope with slip (defined as the benefit from the slope flattening) [13] without 177 

performing many repeat analyses on cases with reduced slope angles. In this section the sliding block method 178 

introduced by [12] and modified by [13] to allow for geometric hardening in fallow slopes is further developed 179 

to estimate the permanent deformation response of vegetated slopes, utilising only initial yield accelerations 180 

derived from DLO. 181 

The mechanism of earthquake induced slope displacement is the sliding of an essentially rigid block (for 182 

shallow translational slips such as shown in Fig.2) along a well-defined slip surface. From Newmark’s original 183 

method, sliding occurs when the shaking induced acceleration )(ta  exceeds the yield acceleration, khy: 184 

hyslip
ktaa  )(                                                       (12) 185 

where 
slip

a  is the acceleration of the sliding mass. Those portions of the recorded acceleration that exceed the 186 

yield acceleration are integrated to obtain the cumulative displacement history of the block, s(t), using the 187 

following equations: 188 
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where vi  is the slip velocity in the time step ti, di is an increment of slip in this time step and s is the cumulative 192 

soil slip.  193 

Aside from the DLO approach mentioned earlier, the horizontal yield acceleration of a shallow 194 

translational slip in fallow soil may be estimated using standard limit equilibrium techniques, incorporating 195 

pseudo –static acceleration components due to the seismic ground motion, as shown previously in Fig.2 196 

[28][29][30]. Here, the shear strength of the soil along the slip plane τult in the fallow case, assuming that the soil 197 

failure can be described by the Mohr-Coulomb failure criterion using an equivalent associative strength 198 

parameter ϕ
*
, is given by: 199 

*2 tan)cossincos('  uzkzc
hult

               (16) 200 

where c' is the soil cohesion (due to cementation or structure effects). The soil yields when τapplied = τult , where 201 

τapplied was previously defined in Eq. (8), resulting in: 202 
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               (17) 203 

In a vegetated slope, the mechanism is potentially more complicated given that the profile is now non-204 

homogenous (having rooted zones and non-rooted zones of defined geometry, as shown in Fig.1). An initial 205 

assumption may be to average out the effect of the roots across the whole slope face and include it along with 206 

any true soil cohesion in the c′ term in Eq. (17), that is  207 


soil

cc          (18) 208 

where c'soil is the apparent cohesion of the soil itself and Δτ is the additional shear strength provided by the roots. 209 

However, such an approach was used in FE simulations presented in [7] and it was found that it highly over-210 

predicted the reinforcing effect of roots on slope performance and highly under-predicted seismically induced 211 

slip when compared to centrifuge test data. However an alternative way of expressing Eq. (17) with Eq.(18), is 212 

by dividing it into two parts, one attributed to the fallow slope and the other attributed to the mobilisation of root 213 

resistance. This gives: 214 
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           (19) 215 

or, alternatively: 216 

hyfallowhyrootedhy
kkk 

)()(
                          (20) 217 

where Δkhy is the increase of yield acceleration due to the presence of the roots. As both rooted and fallow yield 218 

accelerations can be determined using DLO, the root contribution can be estimated from: 219 

DLO

fallowhy

DLO

rootedhyhy
kkk

)()(
                             (21) 220 

Eq. (20) and Eq. (21) may show small differences in the values of khy between the limit equilibrium (Eq. (20)) 221 

and DLO-derived (Eq. 21) versions depending on the appropriateness of the infinite slope limit equilibrium 222 

model for a particular slope geometry, with the DLO value more appropriately capturing the true geometry of 223 

the failure mechanism.  224 

The slope angle will decrease with slip as crest settlements make the slope shallower (re-grading, RG). A 225 

simplified model for re-grading is shown schematically in Fig.4 after [13]. The instantaneous slope angle βi+1 226 

can be estimated by the following equation, 227 
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where Hi is the height of the slope at the previous time step of the Newmark analysis. For the initial time step, d0 229 

= 0, Hi = H and βi = β0 (initial slope angle). It is assumed here that once the slope has deformed to a new, smaller 230 

value of β, the failure mechanism will continue to be of the translational type, with a new slip surface parallel to 231 

the new slope surface. Then the slope angle can be re-calculated at each time step to account for the regrading of 232 

the slope based on the increment of slip occurring in the previous time step using Eq. (22). For the case of a 233 

vegetated slope, as the rooted zones are near-surface it is here assumed that they will move with the surrounding 234 

soil and that khy(rooted) is affected be re-grading in the same way as khy(fallow) (i.e. that the effect is related purely to 235 

the external geometry of the slope), such that Δkhy in Eq. (21) will remain constant throughout the analysis. It is 236 

therefore proposed that Eq. (20) can be modified to incorporate re-grading by multiplying the khy(fallow) value 237 

from DLO by a ‘re-grading reduction factor’ determined from the limit equilibrium method without recourse to 238 

further DLO, recalculated in each time step as the slope flattens out, according to: 239 
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with khy(fallow) from Eq. (17). Eq. (23) incorporates, in an approximate way, the effects of the actual failure 241 

mechanism geometry and any changes through the addition of the roots (through the use of DLO-derived yield 242 

acceleration values), soil non-associativity (via ϕ
*
) and geometric re-grading (updating of β) into a yield 243 

acceleration that can evolve as the slope slips. It requires two initial DLO analyses of the initial geometry, one 244 



fallow and one rooted, and subsequently only Eq. (17) and Eq. (23) need to be computed at each time step 245 

within an otherwise standard Newmark sliding block analysis. A flowchart, showing the complete procedure, is 246 

shown in Fig.5. The effectiveness of this model in quantifying the performance of rooted slopes will be 247 

validated against previously reported centrifuge data [8] in the following section. 248 

 249 

3. Validation of sliding block model 250 

3.1 Centrifuge modelling  251 

Dynamic centrifuge modelling was conducted using the 3.5 m diameter beam centrifuge and servo-hydraulic 252 

earthquake simulator (EQS) at the University of Dundee [31]. The modelling and observations from these tests 253 

are described in detail in [8]; only a brief summary is given here. The results of four tests from this previously 254 

reported programme are utilised herein for validation of the Newmark model, representing identical 1:2 slopes 255 

(β ≈ 27°) at model scale, with varied g-level (to model slopes of different prototype height) and motion 256 

frequency content as indicated in Table 1. All values presented herein are given at prototype scale, unless 257 

specifically noted otherwise. The slope models were constructed within an Equivalent Shear Beam (ESB) 258 

container in order to replicate a semi-infinite horizontal boundary condition in the direction of shaking [32],[33]. 259 

The slopes (at model scales) were prepared using dry HST 95 silica sand at a relative density of 55%-60% to 260 

form a model slope of height 240 mm from toe to crest, with a further 80 mm underneath. Based on these 261 

dimensions, at 1:10 scale (i.e. in a 10-g test) the prototype slope was 2.4 m high from toe to crest and at 1:30 262 

scale and 30-g, the slope was 7.2 m tall. These models are shown in Fig.6.  The sand was pluviated in air around 263 

suspended model root clusters with realistic 3-D geometry that were fabricated at 1:10 and 1:30 scales using a 264 

Stratesys Inc. uPrint SE Acrylonitrile Butadiene Styrene (ABS) prototyper (also known as a 3-D printer) 265 

following the procedures outlined in [9], in each case penetrating into the slope to the same rooting depth (1.5 266 

m).  The ABS plastic root analogues were validated to be highly representative of the mechanical behaviour of 267 

real roots (in terms of Young’s Modulus and tensile strength) after a series of uniaxial tension and bending tests, 268 

reported in [7],[9]. In the out-of-plane direction, model root clusters were uniformly distributed at a spacing of 269 

1.4 m. The models were each subjected to eight successive earthquake motions, comprising three different 270 

records with distinct peak ground acceleration (PGA), duration and frequency content. The first motion (EQ1) 271 

was recorded during the 1995 Aegion earthquake (Ms 6.2) and was predicted to cause only a small amount of 272 

slip and predominantly acts to characterize the elastic dynamic behaviour of the slope. This initial motion was 273 

followed by three nominally identical stronger motions (EQ2 – EQ4) from the 1994 Northridge earthquake (Ms 274 

6.8) and a further three (EQ5 – EQ7) from the 2009 L’Aquila earthquake (Ms 6.3), followed by a final Aegion 275 

motion (EQ8). More details about these motions can be found in [7],[8]. 276 

3.2 Determination of yield accelerations from DLO  277 

Before the Newmark-type analysis can be conducted, yield accelerations must be determined for the fallow and 278 

rooted cases using DLO. Model layouts are shown in Fig.7 for rooted cases TL 07 (Fig.6(a)) and TL 06 279 

(Fig.6(b)).  Fallow cases had identical external geometry but without the rooted soil blocks shown in Fig.7. A 280 



fine nodal density (1000 nodes) was used in all DLO calculations to accurately describe the geometry of the 281 

failure mechanism. 282 

The properties of the soil within the slope were determined using the model shown in Fig.3.  According to 283 

Eq. (2) to Eq. (6), peak friction angle may be evaluated as a function of depth in the two slope models shown in 284 

Fig.7 and averaged over the slope height H to obtain mean peak (upper-bound) friction angles of 47° and 44.5°, 285 

for the 2.4 m and 7.2 m slopes, respectively.  Considering first the shorter slope, the recorded peak accelerations 286 

in EQ1 were 0.124g and 0.144g, for the fallow and rooted slopes, respectively, corresponding to a yield surface 287 

with an initial 'mob of 34° and 35°. Compared with the subsequent motions, the peak acceleration of EQ1 was 288 

relatively small. A mobilised friction angle of approximately 38° (or 38.5°) can be determined for the 289 

subsequent earthquake motions EQ2-EQ4, as shown in Fig.8 (a). Given that the peak accelerations of the 290 

remaining motions (EQ5-EQ8) are not higher than those of EQ2 to EQ4, the maximum mobilised dilation has 291 

been achieved during motion EQ2, and no further change in mobilised friction angle would be observed for the 292 

final motions. In terms of the taller slope (Fig.8 (b)) which is subject to larger motions due to the increased 293 

prototype low frequency content that could be simulated by the EQS at the higher scaling factor, the recorded 294 

peak acceleration of EQ 1 is 0.196g, which corresponds to a yield surface with an initial 'mob of 38°. For EQ2, 295 

the recorded peak acceleration is 0.61g, which is significantly higher than 0.31g (acceleration corresponding to 296 

the capping yield surface when 'mob = 'pk), so all subsequent motions will mobilise the full peak friction angle 297 

of the soil. These values of 'mob were subsequently converted to equivalent associative values  using Eq. (1), 298 

with the values shown in Table 2.   299 

For the rooted soil, the additional strength contribution (Δτ) from the roots used within the smeared rooted 300 

zones (see Fig.1 & Fig.7) were input to represent the 3-D model root clusters based on the results of tests in a 301 

large direct shear apparatus (DSA) that are reported in [7] and summarised in Fig.9. In the out plane direction, 302 

the spacing between the adjacent root clusters was 1.4 m, so the input values were reduced by a factor of 1.4 303 

compared to the measured values (this is shown in Fig.9 (b)) to determine an equivalent amount of additional 304 

shear strength in the rooted zones per metre length of the (long) slope. For future practical application in the 305 

field, Δτ as a function of depth could be determined using new in-situ test methods (e.g. the ‘corkscrew’ test) 306 

currently under development and undergoing field trials at the University of Dundee [34],[35]. The results of the 307 

DLO analyses for the different slope heights, vegetation conditions and mobilised friction angles are 308 

summarised in Table 2.  In addition to the yield acceleration, the static factor of safety (Fs) is also determined in 309 

each case for context. Yield accelerations for fallow conditions were also estimated using the limit equilibrium 310 

method (Eq. 17) and these results confirm that a reasonable estimation of khy is made using DLO for the fallow 311 

cases in cohesionless soil. 312 

The presence of roots is found to improve slope stability both in the static and dynamic condition.  From 313 

Table 2, an improvement of approximately 8% and 14% is observed for the static safety factor, for the 2.4 m and 314 

7.2 m high slopes, respectively. In the dynamic condition, the yield acceleration is increased by 14-21% and 23-315 

39%, for the 2.4 m and 7.2 m slopes, respectively. It is clear therefore that the presence of plant roots increases 316 

slope stability and will reduce seismic slip due to increased yield acceleration.   317 



A comparison of the failure mechanisms determined for the fallow and vegetated slopes is shown in Fig.10. 318 

It is clear that the 1:2 fallow slopes fail in a shallow translational mechanism, with a shear plane located at a 319 

depth of 0.25 m and 0.70m, for the 2.4 m and 7.2 m slopes, respectively. This is consistent with visual 320 

observations from the centrifuge tests. For the vegetated cases, different failure mechanisms are illustrated 321 

between the larger slope (7.2 m) and the smaller slope (2.4 m).  For the 7.2 m high slope, the slip plane is 322 

observed to move from its fallow position at a depth of 0.7 m below the ground surface, which would have 323 

passed (at approximately mid-depth) through the rooted zone, to below the rooted zone.  For the 2.4 m high 324 

rooted slope, it is subject to a much shallower (0.09m) localised slip failure between the rooted zones.  This 325 

appears to be a very different ‘buttressing’ mechanism, similar to that identified via FE modelling of a similar 326 

slope with much simpler straight vertical rod root analogues in [7].  However, given that the roots penetrate very 327 

deeply into the 2.4m slope such that they almost touch the base of the slope (Fig. 7(a) and Fig. 10(b)), it may be 328 

that there is a deep mechanism passing beneath the roots as in the 7.2 m high slope with a similar khy that is 329 

suppressed by the closeness of the bottom boundary (as a result of the limited model container size in the 330 

centrifuge).  In any case, it is apparent that the mechanism by which the roots achieve their stabilising effect is 331 

by forcing the slip plane into a less optimal position around the rooted zones, compared to the fallow case.  332 

Historically, the contribution of roots within slope stability problems has been considered through the 333 

addition of Δτ along the unaltered fallow position of the slip plane, i.e. an increase of strength, rather than a 334 

change in mechanism. This would previously have suggested that in order to maximise the effect of the 335 

vegetation, species should be selected to have a large root area ratio and the strongest biomechanical strength 336 

(i.e. lots of strong roots).  The results shown here suggest that knowing the root shear strength contribution is 337 

still important, but that (i) it is important to understand how this varies with position (particularly depth) in the 338 

soil, rather than just conducting shear box tests of rooted soil block samples at a single depth, as this will affect 339 

the optimal position of the shear plane as found using DLO; and (ii) once the roots provide a strong enough 340 

contribution to force the slip plane to pass beneath them, there will be little point in targeting further root 341 

strength.  This suggests that if planting vegetation to improve slope performance, it may not be ideal to limit 342 

species choice to the strongest rooting species, but that selection should be made based on rooting depth (and, 343 

potentially, lateral root spread, CRZ) to result in the greatest deviation in the position of the slip plane.  This will 344 

be explored further in a later section.  345 

3.3 Prediction of slip via sliding block analyses 346 

Sliding-block analyses were subsequently conducted for each of the centrifuge tests, for the complete set of 347 

eight successive earthquake motions.  The input earthquake motion used was the acceleration record measured 348 

at instrument ACC2 in each case (Fig. 6).  The effects of root resistance, geometric re-grading (change in β) and 349 

non-associativity on the yield acceleration compared to the fallow slope using the mobilised friction angles for 350 

EQ1(small earthquake) and EQ2 (large earthquake) of TL 06 is shown in Fig. 11 as an example. Only the 351 

positive (downslope) accelerations have been shown for clarity.  For the dry, cohesionless soil used in the 352 

centrifuge tests, Eqs. (17) and (23) become: 353 
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It can be seen that the model considering non-associativity via  increases the initial yield acceleration 356 

compared with an analysis using a critical state strength model (strain hardening, SH, to 'cs). As a result, a large 357 

portion of EQ1 is below the yield acceleration and this will strongly influence the deformation response (this 358 

will be illustrated later). It is worth noting here that the effect of root resistance on yield acceleration was 359 

constant between EQ1 and EQ2.  This is clearly a simplification of the problem because in reality, root 360 

resistance will be mobilised progressively with slip rather than instantaneously reaching peak resistance. 361 

However, given that root-soil interaction will mobilise very rapidly with slip due to the small diameter of the 362 

roots [7], this simplification is considered to be a reasonable approximation in an analysis which is designed to 363 

be practical to use. Geometric re-grading causes the yield acceleration to increase non-linearly throughout the 364 

earthquake with continuing slip (this is most noticeable for the larger motion, EQ2, in Fig.11 (b)), which will 365 

lead to reduced slip velocity and hence reduced permanent slip compared with the case with no geometric 366 

hardening.   367 

3.4 Fallow slopes 368 

Fig.12 and Fig.13 show the cumulative crest settlement across the eight earthquakes as predicted by the new 369 

sliding block model and compare these predictions to the values measured in the centrifuge tests, for the 1:30 370 

scale (7.2 m high) slope and the 1:10 scale (2.4 m high) models, respectively. In Fig.12, predictions are made 371 

based on both Eq. (17), which uses  based on 'mob , and also using a previous strain-softening model [13].  As 372 

the earthquake motions were large enough to mobilise 'pk in all but EQ1, this case is a test of the suitability of 373 

using  within analyses; this is shown to give a very good match to the centrifuge data.  In terms of the 2.4 m 374 

slope, because of the smaller motions in this test, all of the earthquakes have 'mob < 'pk , so this represents a 375 

good test of the new sub-peak slip model (Eq. 11).  As the earthquake motions get stronger, the mobilised 376 

friction angle increases from 34° to 36.7°and 38°, for EQ1, EQ2 and the last six motions, respectively.  The 377 

match to the centrifuge data is very good, with the new model capturing the accrual of small deformations (of 378 

the order of ~40 mm total, compared to the ~300 mm in Fig. 12).  In contrast, the use of the previous model 379 

from [13] predicts no slip in the 2.4 m case, as despite having a sophisticated strain-softening model, the 380 

dynamically-induced shear stresses are never sufficient to exceed the peak strength and thereby trigger slip.   381 

3.5 Rooted slopes 382 

Fig.14 shows the results of simulations of cumulative crest displacement compared with the centrifuge test data, 383 

for the 7.2 m rooted slope. A good match to the total measured crest settlement at the end of the test is presented.  384 

A reduction of 15% in calculated permanent crest settlement is observed compared to the fallow case through 385 

the modified sliding block model results.  This reduction is consistent with the reduction in slip observed in the 386 

centrifuge tests (15%). The sliding block model does not quite capture the reduction within each motion 387 



perfectly – as observed, the root contribution is mainly mobilised in EQ4 in the centrifuge tests, but this is 388 

mobilised from EQ2 progressively in the simulated case.   389 

Results for the 2.4 m rooted slope case are presented in Fig.15. Here, four cases were considered: case (a) 390 

is a direct comparison to the fallow case, with the only difference being the addition of the rooted zones; case (b) 391 

is established to account for the root buttressing behaviour observed in DLO (Fig. 7(a)), and is achieved by 392 

adjusting the slope height from 2.4m to 0.4 m in the calculation; case (c) corresponds to the reduction of peak 393 

acceleration observed in centrifuge tests (by 10% - 20% at instruments ACC 6, 7, 10 and 11 in Fig.6 (a)) due to 394 

the presence of the roots in this particular test and is incorporated by multiplying the input motion by a factor of 395 

0.85 to obtain a new input motion [9]; case (d) considers the combined effects of case (b) and case (c).  It can 396 

clearly be seen that case (a) without consideration of the acceleration reduction effect highly under-estimates the 397 

contribution of the roots in reducing the slope crest deformation response. Compared to the fallow case, the 398 

inclusion of roots (case (a)) reduced the crest settlement by 61%; accounting for the buttressing effect (case (b)) 399 

reduced it by 74%; the reduction in acceleration (case (c)) reduces it by 86% and the combined effects (case (d)) 400 

result in a reduction of 89%, which is a little higher than the reduction observed in the centrifuge tests (85%).  401 

The reason for this is associated with the fact that the contribution of roots is mainly mobilized during the first 402 

two motions and then has an apparently less significant effect for the last six motions in the centrifuge tests but 403 

the simulated case assumes that the root contribution remains constant across the eight earthquakes. Fig.15 404 

suggests that the contribution of roots to reducing seismic slip within slopes is a combination of an increase in 405 

yield acceleration associated with a change of failure mechanism and a small reduction in accelerations within 406 

the slipping mass.  Fig.16 summarises the results of all of the predictions at the end of each earthquake motion, 407 

from which it can be seen that the new model is effective across the full range of slope heights and motions 408 

tested, for both fallow and rooted slopes.  409 

 410 

4. Further insights into rooted slope seismic behaviour 411 

In this section, the influence of the root contribution to shear strength is further investigated using the modified 412 

sliding-block procedure, particularly to explore the aforementioned feature of the increase in yield acceleration 413 

and reduction in slip resulting principally from a change in mechanism rather than the addition of root strength 414 

along the fallow slip plane. Starting with the Δτ-depth profiles shown in Fig.9, the values of Δτ were 415 

progressively reduced at all depths by a constant factor.  This could represent the use of a different species 416 

which has a smaller strength contribution (but similar distribution with depth), or a slope with the initial strength 417 

distribution considered herein as the vegetation dies and the roots subsequently decay.  The variation of yield 418 

acceleration with the reduction of root cohesion as determined from DLO is shown in Fig.17 (a). The 419 

normalised root contribution is the reduction factor used to multiply the initial Δτ-depth profile (essentially the 420 

percentage strength remaining if the roots were decaying); the normalised yield acceleration is khy(rooted) from 421 

DLO, divided by khy(fallow), also from DLO. Fig.17 (b) shows crest settlements subsequently computed using the 422 

Newmark procedure, where the normalised settlement is the crest settlement of the rooted case divided by the 423 

crest settlement of the fallow case. Mechanisms for some of the key low strength cases showing transitions in 424 

behaviour are given in Fig.18. It can be seen that the yield acceleration remains constant even when the 425 



normalised root contribution decreases to 2.5% of its initial strength for the 2.4 m slope (0.4-0.5 kPa of 426 

normalised root contribution within the rooted zone). FE model simulations reported in [36] show almost 427 

identical reinforcing effect at 100% normalised root contribution, and also suggest that the reinforcing effect can 428 

be maintained down to 25% of the initial value of the normalised root contribution (i.e. over a wide range of Δτ 429 

values) in the 2.4 m case – Fig.18 (b). However a smoother transition to no effect at zero normalised root 430 

contribution is shown in the FE compared to the more abrupt change in the approximate DLO-Newmark 431 

approach. For the taller slope, there is again a very close match to FE simulations at 100% normalised root 432 

contribution. The reduction in yield acceleration as the normalised root contribution is reduced is more sudden 433 

for the DLO-Newmark approach in this case reducing once normalised root contribution becomes less than 434 

7.5%. The FE simulations again show a more progressive reduction in reinforcing effect compared to the DLO-435 

Newmark approach. However, it is clear in both cases that (i) a substantial component of the reinforcing effect 436 

of the roots can be maintained even if the root contribution is only half as strong, which has important 437 

implications for vegetation management in allowing new vegetation to establish as older roots decay; and (ii) 438 

once the failure mechanism has moved deeper, there is no further increase in yield acceleration with stronger 439 

roots, which suggests that for the use of vegetation in engineering practice, species should be selected on the 440 

basis of maximum hr (and CRZ) to alter the failure mechanism as much as possible, rather than selecting for the 441 

strongest possible roots.  442 

 443 

5. Conclusions 444 

An improved Newmark sliding-block procedure, which can include the effect of plant roots on seismic slope 445 

performance, has been developed and validated against dynamic centrifuge data. The procedure consists of two 446 

components. Firstly, DLO analysis is used to determine the seismic slope failure mechanism and estimate the 447 

corresponding yield accelerations of a given slope in fallow and rooted cases. A rigid perfectly plastic (Mohr–448 

Coulomb) model with associative flow is used to model the soil, but utilises mobilised equivalent friction angles 449 

to approximate both the non-associative behaviour of cohesionless slopes and predict small accrued 450 

deformations when the earthquake-induced shear stresses are not sufficient to exceed peak strength, but may 451 

result in non-linear elasto-plastic behaviour and some plastic straining. The second stage utilises these derived 452 

yield accelerations from DLO into a modified Newmark sliding block approach to predict the permanent 453 

settlement at the crest of the slope; this also accounts for the geometric hardening (flattening) of the slope with 454 

continued slip making the model suitable for whole-life performance estimation. This procedure has been 455 

validated to be highly effective in predicting permanent slip for both fallow and vegetated slopes as measured in 456 

centrifuge tests and can be easily performed in preliminary design with lower computational effort than Finite 457 

Element modelling.  Some factors that may influence the seismic performance of root reinforced slopes were 458 

also revealed during the development of sliding-block model. The presence of roots increase the slip plane depth 459 

and it is this effect which is principally responsible for increasing the yield acceleration and hence reducing 460 

deformations within the slope. This is in contrast to previous models which assume roots add additional shear 461 

strength onto the pre-existing (fallow) shear plane. This new finding suggests that once the roots provide enough 462 

additional shear strength to deviate the shear plane in this manner, the key controlling property of the roots will 463 



be the rooting depth (and possibly also spread) rather than the strength of the roots. The potential benefit of 464 

roots appears to vary with the size of the slope. For taller slopes where the root depth is only a small proportion 465 

of the slope height (low hr/H), roots only increase the yield acceleration of the slope against dynamic loading. 466 

For smaller slopes with higher hr/H the proportional effect of this increase in yield acceleration appears to be 467 

more significant, and there is some evidence that the roots also reduce the strength of the earthquake motion 468 

within the slipping mass resulting in increased effectiveness and much reduced deformation response at the crest. 469 

Vegetation may therefore be particularly effective in smaller slopes, offering a low cost and low carbon 470 

alternative that could potentially replace more traditional stabilisation methods.   471 

 472 

Appendix A  473 

This appendix is from [16]. The primal kinematic problem formulation for the plane strain analysis of a quasi-474 

statically loaded, perfectly plastic cohesive-frictional body discretised using m nodal connections (slip-line 475 

discontinuities), n nodes and a single load case can be given by 476 

pgdfdf
TT

D

T

L min                                   (A.1) 477 

subject to 478 

0Bd                                                                       (A.2) 479 

0dNp                                                                   (A.3) 480 

1df
T

L                                                                      (A.4) 481 

0p                                                                         (A.5) 482 

where Df and Lf are vectors containing respectively specified dead and live loads, d contains displacements 483 

along the discontinuities, where  m

T nnsns ,,,,, 2211 d  and is and in are the relative shear and normal 484 

displacements between blocks at discontinuity i ;  mm

T lclclc ,,, 2211 d , where il and ic are respectively the 485 

length and cohesive shear strength of discontinuity i . B  is a suitable (2n×2m) compatibility matrix , N  is a 486 

suitable (2m×2m) flow matrix and p is a (2m) vector of plastic multipliers. The discontinuity displacement in d487 

and the plastic multipliers in p are the linear programing variables. 488 

For seismic problems, pseudo-static theory may be employed [16]. The imposition of horizontal and vertical 489 

seismic acceleration within the system results in additional work terms in the governing equation that are 490 

analogous to that for self- weight. Here, the contribution made by discontinuity i  to the df
T

D term in Eq. (A.1) 491 

can be written as  492 
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where vk and hk are the vertical and horizontal pseudo-static acceleration coefficients, respectively; iW  is the 494 

total weight of the strip of material laying vertically above discontinuity i; i  and 
i  are the horizontal and 495 

vertical direction cosines of the discontinuity in question. 496 

The DLO method finds the optimal collapse mechanism for the problem studied. This is achieved through 497 

increasing loading within the system until collapse is achieved, by applying what is termed an ‘adequacy factor’ 498 

to a given load. In the case of seismic loading, this factor is applied to the horizontal or vertical acceleration. To 499 

apply live loading to the horizontal and vertical acceleration, the df
T

D term in Eq. (A.1) is not modified, instead 500 

modification is performed on the df
T

L terms, and given by 501 
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Table 1. Summary of centrifuge models tested  

Test identification 

number 

Scale Slope 

height (m) 

Rooting type Root cluster 

quantity 

Plant spacing,  

out-of-plane (m) 

Motion frequency 

content (Hz) 

TL 04 1:10 2.4 Fallow 0 / 4-30 

TL 05 1:30 7.2 Fallow 0 / 1.33-10 

TL 06 1:30 7.2 1:30 scale root cluster 36 1.4 1.33-10 

TL 07 1:10 2.4 1:10 scale root cluster 4 1.4 4-30 

 

 

Table 2. Static and dynamic slope stability data 

Model ID Slope type Slope height (m) Motion '
mob  

  Fs (DLO) zsilp (m) khy (DLO)  

DLO 01 Fallow 2.4 EQ1 34° 29.8° 1.246 0.36 0.057g 

DLO 02 Fallow 2.4 EQ2-EQ8 38° 33.6° 1.435 0.25 0.124g 

DLO 03 Fallow 2.4 EQ1 35° 30.7° 1.289 0.36 0.073g 

DLO 04 Rooted 2.4 EQ1 35° 30.7° 1.399 0.20* 0.089g 

DLO 05 Fallow 2.4 EQ2-EQ8 38.5° 34.0° 1.456 0.25 0.132g 

DLO 06 Rooted 2.4 EQ2-EQ8 38.5° 34.0° 1.574 0.20* 0.151g 

DLO 07 Fallow 7.2  EQ1 38° 33.6° 1.382 0.75 0.125g 

DLO 08 Rooted 7.2  EQ1 38° 33.6° 1.58 1.50 0.174g 

DLO 09 Fallow 7.2 EQ2-EQ8 44.5° 39.8° 1.724 0.50 0.238g 

DLO 10 Rooted 7.2 EQ2-EQ8 44.5° 39.8° 1.976 1.50 0.293g 

* These cases showed a local slip between root clusters (buttressing effect of roots – Fig.8) 
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