1,161 research outputs found
Scrambling and thermalization in a diffusive quantum many-body system
Out-of-time ordered (OTO) correlation functions describe scrambling of
information in correlated quantum matter. They are of particular interest in
incoherent quantum systems lacking well defined quasi-particles. Thus far, it
is largely elusive how OTO correlators spread in incoherent systems with
diffusive transport governed by a few globally conserved quantities. Here, we
study the dynamical response of such a system using high-performance
matrix-product-operator techniques. Specifically, we consider the
non-integrable, one-dimensional Bose-Hubbard model in the incoherent
high-temperature regime. Our system exhibits diffusive dynamics in time-ordered
correlators of globally conserved quantities, whereas OTO correlators display a
ballistic, light-cone spreading of quantum information. The slowest process in
the global thermalization of the system is thus diffusive, yet information
spreading is not inhibited by such slow dynamics. We furthermore develop an
experimentally feasible protocol to overcome some challenges faced by existing
proposals and to probe time-ordered and OTO correlation functions. Our study
opens new avenues for both the theoretical and experimental exploration of
thermalization and information scrambling dynamics.Comment: 7+4 pages, 8+3 figures; streamlined versio
Angle-resolved photoemission spectroscopy with quantum gas microscopes
Quantum gas microscopes are a promising tool to study interacting quantum
many-body systems and bridge the gap between theoretical models and real
materials. So far they were limited to measurements of instantaneous
correlation functions of the form , even though
extensions to frequency-resolved response functions would provide important information about the elementary
excitations in a many-body system. For example, single particle spectral
functions, which are usually measured using photoemission experiments in
electron systems, contain direct information about fractionalization and the
quasiparticle excitation spectrum. Here, we propose a measurement scheme to
experimentally access the momentum and energy resolved spectral function in a
quantum gas microscope with currently available techniques. As an example for
possible applications, we numerically calculate the spectrum of a single hole
excitation in one-dimensional models with isotropic and anisotropic
antiferromagnetic couplings. A sharp asymmetry in the distribution of spectral
weight appears when a hole is created in an isotropic Heisenberg spin chain.
This effect slowly vanishes for anisotropic spin interactions and disappears
completely in the case of pure Ising interactions. The asymmetry strongly
depends on the total magnetization of the spin chain, which can be tuned in
experiments with quantum gas microscopes. An intuitive picture for the observed
behavior is provided by a slave-fermion mean field theory. The key properties
of the spectra are visible at currently accessible temperatures.Comment: 16+7 pages, 10+2 figure
Extended self-energy functional approach for strongly-correlated lattice bosons in the superfluid phase
Among the various numerical techniques to study the physics of strongly
correlated quantum many-body systems, the self-energy functional approach (SFA)
has become increasingly important. In its previous form, however, SFA is not
applicable to Bose-Einstein condensation or superfluidity. In this paper we
show how to overcome this shortcoming. To this end we identify an appropriate
quantity, which we term , that represents the correlation correction of the
condensate order parameter, as it does the self-energy for the Green's
function. An appropriate functional is derived, which is stationary at the
exact physical realizations of and of the self-energy. Its derivation is
based on a functional-integral representation of the grand potential followed
by an appropriate sequence of Legendre transformations. The approach is not
perturbative and therefore applicable to a wide range of models with local
interactions. We show that the variational cluster approach based on the
extended self-energy functional is equivalent to the "pseudoparticle" approach
introduced in Phys. Rev. B, 83, 134507 (2011). We present results for the
superfluid density in the two-dimensional Bose-Hubbard model, which show a
remarkable agreement with those of Quantum-Monte-Carlo calculations.Comment: 1 additional figure showing the region close to the tip of the Mott
lobe, minor changes in the tex
Terahertz Radiation Detection by Field Effect Transistor in Magnetic Field
We report on terahertz radiation detection with InGaAs/InAlAs Field Effect
Transistors in quantizing magnetic field. The photovoltaic detection signal is
investigated at 4.2 K as a function of the gate voltage and magnetic field.
Oscillations analogous to the Shubnikov-de Haas oscillations, as well as their
strong enhancement at the cyclotron resonance, are observed. The results are
quantitatively described by a recent theory, showing that the detection is due
to rectification of the terahertz radiation by plasma waves related
nonlinearities in the gated part of the channel.Comment: 4 pages, 3 figure
Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications
Resonant frequencies of the two-dimensional plasma in FETs increase with the
reduction of the channel dimensions and can reach the THz range for sub-micron
gate lengths. Nonlinear properties of the electron plasma in the transistor
channel can be used for the detection and mixing of THz frequencies. At
cryogenic temperatures resonant and gate voltage tunable detection related to
plasma waves resonances, is observed. At room temperature, when plasma
oscillations are overdamped, the FET can operate as an efficient broadband THz
detector. We present the main theoretical and experimental results on THz
detection by FETs in the context of their possible application for THz imaging.Comment: 22 pages, 12 figures, review pape
Ultrafast many-body interferometry of impurities coupled to a Fermi sea
The fastest possible collective response of a quantum many-body system is
related to its excitations at the highest possible energy. In condensed-matter
systems, the corresponding timescale is typically set by the Fermi energy.
Taking advantage of fast and precise control of interactions between ultracold
atoms, we report on the observation of ultrafast dynamics of impurities coupled
to an atomic Fermi sea. Our interferometric measurements track the
non-perturbative quantum evolution of a fermionic many-body system, revealing
in real time the formation dynamics of quasiparticles and the quantum
interference between attractive and repulsive states throughout the full depth
of the Fermi sea. Ultrafast time-domain methods to manipulate and investigate
strongly interacting quantum gases open up new windows on the dynamics of
quantum matter under extreme non-equilibrium conditions.Comment: 21 pages, 14 figure
Giant Spin Relaxation Anisotropy in Zinc-Blende Heterostructures
Spin relaxation in-plane anisotropy is predicted for heterostructures based
on zinc-blende semiconductors. It is shown that it manifests itself especially
brightly if the two spin relaxation mechanisms (D'yakonov-Perel' and Rashba)
are comparable in efficiency. It is demonstrated that for the quantum well
grown along the [0 0 1] direction, the main axes of spin relaxation rate tensor
are [1 1 0] and [1 -1 0].Comment: 3 pages, NO figure
Weak antilocalization in a 2D electron gas with the chiral splitting of the spectrum
Motivated by the recent observation of the metal-insulator transition in
Si-MOSFETs we consider the quantum interference correction to the conductivity
in the presence of the Rashba spin splitting. For a small splitting, a
crossover from the localizing to antilocalizing regime is obtained. The
symplectic correction is revealed in the limit of a large separation between
the chiral branches. The relevance of the chiral splitting for the 2D electron
gas in Si-MOSFETs is discussed.Comment: 7 pages, REVTeX. Mistake corrected; in the limit of a large chiral
splitting the correction to the conductivity does not vanish but approaches
the symplectic valu
Nonlocal resistance and its fluctuations in microstructures of band-inverted HgTe/(Hg,Cd)Te quantum wells
We investigate experimentally transport in gated microsctructures containing
a band-inverted HgTe/Hg_{0.3}Cd_{0.7}Te quantum well. Measurements of nonlocal
resistances using many contacts prove that in the depletion regime the current
is carried by the edge channels, as expected for a two-dimensional topological
insulator. However, high and non-quantized values of channel resistances show
that the topological protection length (i.e. the distance on which the carriers
in helical edge channels propagate without backscattering) is much shorter than
the channel length, which is ~100 micrometers. The weak temperature dependence
of the resistance and the presence of temperature dependent reproducible
quasi-periodic resistance fluctuations can be qualitatively explained by the
presence of charge puddles in the well, to which the electrons from the edge
channels are tunnel-coupled.Comment: 8 pages, 4 figures, published versio
- …
