204 research outputs found

    Permeability, pore connectivity and critical pore throat control of expandable polymeric sphere templated macroporous alumina

    Get PDF
    We have regulated the permeability in macroporous alumina materials by manipulating the connectivity of the pore phase and the sizes of the smallest constrictions between connected pores. Templating with particle-coated expandable polymeric spheres (EPS

    Construction of the Femoral Neck During Growth Determines its Strength in Old Age

    Get PDF
    Study of the design of the FN in vivo in 697 women and in vitro in 200 cross-sections of different sizes and shapes along each of 13 FN specimens revealed that strength in old age was largely achieved during growth by differences in the distribution rather than the amount of bone material in a given FN cross-section from individual to individual. Introduction: We studied the design of the femoral neck (FN) to gain insight into the structural basis of FN strength in adulthood and FN fragility in old age. Materials and Methods: Studies in vivo were performed using densitometry in 697 women and in vitro using high-resolution μCT and direct measurements in 13 pairs of postmortem specimens. Results: The contradictory needs of strength for loading yet lightness for mobility were met by varying FN size, shape, spatial distribution, and proportions of its trabecular and cortical bone in a cross-section, not its mass. Wider and narrower FNs were constructed with similar amounts of bone material. Wider FNs were relatively lighter: a 1 SD higher FN volume had a 0.67 (95% CI, 0.61-0.72) SD lower volumetric BMD (vBMD). A 1 SD increment in height was achieved by increasing FN volume by 0.32 (95% CI, 0.25-0.39) SD with only 0.15 (95% CI, 0.08-0.22) SD more bone, so taller individuals had a relatively lighter FN (vBMD was 0.13 [95% CI, 0.05-0.20 SD] SD lower). Greater periosteal apposition constructing a wider FN was offset by even greater endocortical resorption so that the same net amount of bone was distributed as a thinner cortex further from the neutral axis, increasing resistance to bending and lowering vBMD. This was recapitulated at each point along the FN; varying absolute and relative degrees of periosteal apposition and endocortical resorption focally used the same amount of material to fashion an elliptical FN of mainly cortical bone near the femoral shaft to offset bending but a more circular FN of proportionally more trabecular and less cortical bone to accommodate compressive loads adjacent to the pelvis. This structural heterogeneity was largely achieved by adaptive modeling and remodeling during growth-most of the variance in FN volume, BMC, and vBMD was growth related. Conclusions: Altering structural design while minimizing mass achieves FN strength and lightness. Bone fragility may be the result of failure to adapt bone's architecture to loading, not just low bone mass

    Transport and Elastic Properties of Fractal Media

    Full text link
    We investigate the influence of fractal structure on material properties. We calculate the statistical correlation functions of fractal media defined by level-cut Gaussian random fields. This allows the modeling of both surface fractal and mass fractal materials. Variational bounds on the conductivity, diffusivity and elastic moduli of the materials are evaluated. We find that a fractally rough interface has a relatively strong influence on the properties of composites. In contrast a fractal volume (mass) has little effect on material properties.Comment: 10 pages, 6 figure

    Quantitative properties of complex porous materials calculated from X-ray μCT images

    No full text
    A microcomputed tomography (μCT) facility and computational infrastructure developed at the Department of Applied Mathematics at the Australian National University is described. The current experimental facility is capable of acquiring 3D images made up of 20003 voxels on porous specimens up to 60 mm diameter with resolutions down to 2 μm. This allows the three-dimensional (3D) pore-space of porous specimens to be imaged over several orders of magnitude. The computational infrastructure includes the establishment of optimised and distributed memory parallel algorithms for image reconstruction, novel phase identification, 3D visualisation, structural characterisation and prediction of mechanical and transport properties directly from digitised tomographic images. To date over 300 porous specimens exhibiting a wide variety of microstructure have been imaged and analysed. In this paper, analysis of a small set of porous rock specimens with structure ranging from unconsolidated sands to complex carbonates are illustrated. Computations made directly on the digitised tomographic images have been compared to laboratory measurements. The results are in excellent agreement. Additionally, local flow, diffusive and mechanical properties can be numerically derived from solutions of the relevant physical equations on the complex geometries; an experimentally intractable problem. Structural analysis of data sets includes grain and pore partitioning of the images. Local granular partitioning yields over 70,000 grains from a single image. Conventional grain size, shape and connectivity parameters are derived. The 3D organisation of grains can help in correlating grain size, shape and orientation to resultant physical properties. Pore network models generated from 3D images yield over 100000 pores and 200000 throats; comparing the pore structure for the different specimens illustrates the varied topology and geometry observed in porous rocks. This development foreshadows a new numerical laboratory approach to the study of complex porous materials

    3D imaging and flow characterization of the pore space of carbonate core samples

    No full text
    Carbonate rocks are inherently heterogeneous having been laid down in a range of depositional environments and having undergone significant diagenesis. They are particularly difficult to characterise as the pore sizes can vary over orders of magnitudes and connectivity of pores of different scales can impact greatly on flow properties. For example, separate vuggy porosity in an underlying matrix pore system can increase the porosity, but not the permeability and lead to large residual oil saturations due to trapping in vugs. A touching vug network can have a dramatic effect on permeability and lead to higher recoveries. In this paper we image a range of carbonate core material; from model carbonate cores to core material from outcrops and reservoirs via 3D via micro-CT. Image-based calculations of porosity, MICP and permeability on 3D images of the carbonate systems are directly compared to experimental data from the same or sister core material and give good agreement. The carbonate systems studied include samples with well connected macroporous systems and other where the macroporosity is poorly connected. Simulation of permeability on these systems and direct analysis of local flow properties within the system allows one to directly illustrate the important role of the connectivity of macropores on flow properties. Pore network models generated from the images illustrate the varied topology obtained in different carbonate samples and show a dramatic difference when compared to clastic samples. Many carbonate samples can include a significant proportion of microporosity (pores of 2 microns or less in extent) which are not directly accessible via current micro-CT capabilities. We discuss how one can map the structure and the topology of microporous regions crucial in studies of flow, production and recovery in carbonates. A hybrid numerical scheme is developed to measure the contribution of microporosity to the overall core permeability. Overall these results show the important role of identifying the connectivity of the pore sizes in dictating the single phase flow properties. Implications to two phase relative permeability and recovery are briefly discussed

    An x-ray tomography facility for quantitative prediction of mechanical and transport properties in geological, biological and synthetic systems

    Get PDF
    A fully integrated X-ray tomography facility with the ability to generate tomograms with 20483 voxels at 2 micron spatial resolution was built to satisfy the requirements of a virtual materials testing laboratory. The instrument comprises of a continuously pumped micro-focus X-ray gun, a milli-degree rotation stage and a high resolution and large field X-ray camera, configured in a cone beam geometry with a circular trajectory. The purpose of this facility is to routinely analyse and investigate real world biological, geological and synthetic materials at a scale in which the traditional domains of physics, chemistry, biology and geology merge. During the first 2 years of operation, approximately 4 Terabytes of data have been collected, processed and analysed, both as static and in some cases as composite dynamic data sets. This incorporates over 300 tomograms with 10243 voxels and 50 tomograms with 20483 voxels for a wide range of research fields. Specimens analysed include sedimentary rocks, soils, bone, soft tissue, ceramics, fibre-reinforced composites, foams, wood, paper, fossils, sphere packs, bio-morphs and small animals. In this paper, the flexibility of the facility is highlighted with some prime examples

    IMAGING OF PORE SCALE DISTRIBUTION OF FLUIDS AND WETTABILITY

    Get PDF
    ABSTRACT Wettability has a profound effect on reservoir recovery and productivity. It determines the microscopic distribution of fluids in the pore-space which, in turn, determine important global multiphase properties such as capillary pressure, relative permeability, residual saturation and resistivity index. Complexities in pore-space geometry, rock-fluid and fluidfluid interactions have limited descriptions of wettability to highly simplified model systems and wettability in real porous systems remains a poorly understood phenomenon. This paper utilizes two new techniques which have the potential to greatly improve our understanding of wettability in real porous systems. The first is a technique to reproducibly clean and modify the surface energy of clastic and carbonate cores to produce well defined wettability states. The second is a technique for directly imaging the pore-scale distribution of fluids in reservoir cores using high resolution tomography and a newly developed 3D registration technique which allows voxel perfect alignment of a set of images of the same core. We present results for a preliminary study of drainage and imbibition in Fontainebleau sandstone, sucrosic dolomite and oomoldic grainstone cores at well defined wettability states using air and water to demonstrate the applicability of the techniques. The imaged fluid distributions show that gas is preferentially located in larger pores with water occupying smaller pores. The gas saturations measured compare well with those calculated from the imaged fluid distributions. The imaged pore-scale fluid distributions are also compared with predictions based on computations made directly on dry images of the pore-space and in equivalent network models. The computations use simple percolation concepts to model the pore-scale distributions. Drainage saturations and fluid distributions compare well with invasion percolation. Imbibition fluid distributions compare well with ordinary percolation. The comparisons show, for the first time, the feasibility of testing the validity of network models for multi-phase flow by directly comparing model fluid saturations with imaged saturations in real systems on a pore-to-pore basis

    The combination of carboxy-terminal propeptide of procollagen type I blood levels and late gadolinium enhancement at cardiac magnetic resonance provides additional prognostic information in idiopathic dilated cardiomyopathy - A multilevel assessment of myocardial fibrosis in dilated cardiomyopathy

    Get PDF
    Aims To determine the prognostic value of multilevel assessment of fibrosis in dilated cardiomyopathy (DCM) patients. Methods and results We quantified fibrosis in 209 DCM patients at three levels: (i) non-invasive late gadolinium enhancement (LGE) at cardiac magnetic resonance (CMR); (ii) blood biomarkers [amino-terminal propeptide of procollagen type III (PIIINP) and carboxy-terminal propeptide of procollagen type I (PICP)], (iii) invasive endomyocardial biopsy (EMB) (collagen volume fraction, CVF). Both LGE and elevated blood PICP levels, but neither PIIINP nor CVF predicted a worse outcome defined as death, heart transplantation, heart failure hospitalization, or life-threatening arrhythmias, after adjusting for known clinical predictors [adjusted hazard ratios: LGE 3.54, 95% confidence interval (CI) 1.90-6.60; P < 0.001 and PICP 1.02, 95% CI 1.01-1.03; P = 0.001]. The combination of LGE and PICP provided the highest prognostic benefit in prediction (likelihood ratio test P = 0.007) and reclassification (net reclassification index: 0.28, P = 0.02; and integrated discrimination improvement index: 0.139, P = 0.01) when added to the clinical prediction model. Moreover, patients with a combination of LGE and elevated PICP (LGE+/PICP+) had the worst prognosis (log-rank P < 0.001). RNA-sequencing and gene enrichment analysis of EMB showed an increased expression of pro-fibrotic and pro-inflammatory pathways in patients with high levels of fibrosis (LGE+/PICP+) compared to patients with low levels of fibrosis (LGE-/PICP-). This would suggest the validity of myocardial fibrosis detection by LGE and PICP, as the subsequent generated fibrotic risk profiles are associated with distinct cardiac transcriptomic profiles. Conclusion The combination of myocardial fibrosis at CMR and circulating PICP levels provides additive prognostic value accompanied by a pro-fibrotic and pro-inflammatory transcriptomic profile in DCM patients with LGE and elevated PICP
    corecore