35 research outputs found

    Progressive leukoencephalopathy impairs neurobehavioral development in sialin-deficient mice

    Get PDF
    Slc17a5−/− mice represent an animal model for the infantile form of sialic acid storage disease (SASD). We analyzed genetic and histological time-course expression of myelin and oligodendrocyte (OL) lineage markers in different parts of the CNS, and related this to postnatal neurobehavioral development in these mice. Sialin-deficient mice display a distinct spatiotemporal pattern of sialic acid storage, CNS hypomyelination and leukoencephalopathy. Whereas few genes are differentially expressed in the perinatal stage (p0), microarray analysis revealed increased differential gene expression in later postnatal stages (p10–p18). This included progressive upregulation of neuroinflammatory genes, as well as continuous down-regulation of genes that encode myelin constituents and typical OL lineage markers. Age-related histopathological analysis indicates that initial myelination occurs normally in hindbrain regions, but progression to more frontal areas is affected in Slc17a5−/− mice. This course of progressive leukoencephalopathy and CNS hypomyelination delays neurobehavioral development in sialin-deficient mice. Slc17a5−/− mice successfully achieve early neurobehavioral milestones, but exhibit progressive delay of later-stage sensory and motor milestones. The present findings may contribute to further understanding of the processes of CNS myelination as well as help to develop therapeutic strategies for SASD and other myelination disorders

    Influence of convolution filtering on coronary plaque attenuation values: observations in an ex vivo model of multislice computed tomography coronary angiography

    Get PDF
    Attenuation variability (measured in Hounsfield Units, HU) of human coronary plaques using multislice computed tomography (MSCT) was evaluated in an ex vivo model with increasing convolution kernels. MSCT was performed in seven ex vivo left coronary arteries sunk into oil followingthe instillation of saline (1/∞) and a 1/50 solution of contrast material (400 mgI/ml iomeprol). Scan parameters were: slices/collimation, 16/0.75 mm; rotation time, 375 ms. Four convolution kernels were used: b30f-smooth, b36f-medium smooth, b46f-medium and b60f-sharp. An experienced radiologist scored for the presence of plaques and measured the attenuation in lumen, calcified and noncalcified plaques and the surrounding oil. The results were compared by the ANOVA test and correlated with Pearson’s test. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. The mean attenuation values were significantly different between the four filters (p < 0.0001) in each structure with both solutions. After clustering for the filter, all of the noncalcified plaque values (20.8 ± 39.1, 14.2 ± 35.8, 14.0 ± 32.0, 3.2 ± 32.4 HU with saline; 74.7 ± 66.6, 68.2 ± 63.3, 66.3 ± 66.5, 48.5 ± 60.0 HU in contrast solution) were significantly different, with the exception of the pair b36f–b46f, for which a moderate-high correlation was generally found. Improved SNRs and CNRs were achieved by b30f and b46f. The use of different convolution filters significantly modifief the attenuation values, while sharper filtering increased the calcified plaque attenuation and reduced the noncalcified plaque attenuation

    Asymptomatic small fiber neuropathy in diabetes mellitus: investigations with intraepidermal nerve fiber density, quantitative sensory testing and laser-evoked potentials

    No full text
    This study aimed at evaluating the performance of a battery of morphological and functional tests for the assessment of small nerve fiber loss in asymptomatic diabetic neuropathy (DNP). Patients diagnosed for ≥10 years with type 1 (n = 10) or type 2 (n = 13) diabetes mellitus (DM) without conventional symptoms or signs of DNP were recruited and compared with healthy controls (n = 18) and patients with overt DNP (n = 5). Intraepidermal nerve fiber density (IENFd) was measured with PGP9.5 immunostaining on punch skin biopsies performed at the distal leg. Functional tests consisted of quantitative sensory testing (QST) for light-touch, cool, warm and heat pain detection thresholds and brain-evoked potentials with electrical (SEPs) and CO(2) laser stimulation [laser-evoked potentials (LEPs)] of hand dorsum and distal leg using small (0.8 mm(2)) and large (20 mm(2)) beam sizes. Results confirmed a state of asymptomatic DNP in DM, but only at the distal leg. Defining a critical small fiber loss as a reduction of IENFd ≤-2 z scores of healthy controls, this state prevailed in type 2 (30%) over type 1 DM (10%) patients despite similar disease duration and current glycemic control. LEPs with the small laser beam performed best in terms of sensitivity (91%), specificity (83%) and area-under-the ROC curve (0.924). Although this performance was not statically different from that of warm and cold detection threshold, LEPs offer an advantage over QST given that they bypass the subjective report and are therefore unbiased by perceptual factors

    The time course of CO(2) laser-evoked responses and of skin nerve fibre markers after topical capsaicin in human volunteers

    No full text
    OBJECTIVE: To assess the temporal relationship between skin nerve denervation and regeneration (dermal and intra-epidermal fibres, IENF) and functional changes (CO(2) laser-evoked potentials, LEPs, and quantitative sensory tests, QST) after topical cutaneous application of capsaicin. METHODS: Capsaicin (0.075%) was applied to the lateral calf for three consecutive days. QST, LEPs and skin biopsies were performed at baseline and time intervals up to 54days post-capsaicin treatment. Biopsies were immunostained with antibodies for PGP9.5, TRPV1, and GAP-43 (marker of regenerating nerve fibres), and analyzed for IENFs and dermal innervation (for GAP-43). RESULTS: At 1day post-capsaicin, cutaneous thermal sensitivity was reduced, as were LEPs. PGP9.5, TRPV1, and GAP-43 immunoreactive-nerve fibres were almost completely absent. By Day 12, LEPs had fully recovered, but PGP9.5 and TRPV1 IENF continued to be significantly decreased 54days post-capsaicin. In contrast, dermal GAP-43 immunoreactivity closely matched recovery of LEPs. CONCLUSIONS: A good correlation was observed between LEPs and GAP-43 staining, in contrast to PGP9.5 and TRPV1. Laser stimulation is a non-invasive and sensitive method for assessing the initial IENF loss, and regenerating nerve fibres. SIGNIFICANCE: Assessing skin biopsies by PGP9.5 immunostaining alone may miss significant diagnostic and prognostic information regarding regenerating nerve fibres, if other approaches are neglected, e.g. LEPs or GAP-43 immunostaining

    Percutaneous coronary intervention of native coronary artery versus saphenous vein graft in patients with prior coronary artery bypass graft surgery: Rationale and design of the multicenter, randomized PROCTOR trial

    No full text
    Background: Patients with prior coronary artery bypass grafting (CABG) frequently require repeat percutaneous revascularization due to advanced age, progressive coronary artery disease and bypass graft failure. Percutaneous coronary intervention (PCI) of either the bypass graft or the native coronary artery may be performed. Randomized trials comparing native vessel PCI with bypass graft PCI are lacking and long-term outcomes have not been reported. Methods: PROCTOR (NCT03805048) is a prospective, multicenter, randomized controlled trial, that will include 584 patients presenting with saphenous vein graft (SVG) failure and a clinical indication for revascularization, as determined by the local Heart Team. The trial is designed to compare the clinical and angiographic outcomes in patients randomly allocated in a 1:1 fashion to either a strategy of native vessel PCI or SVG PCI. The primary study endpoint is a 3-year composite of major adverse cardiac events (MACE: all-cause mortality, non-fatal target coronary territory myocardial infarction [MI], or clinically driven target coronary territory revascularization). At 3-years, after evaluation of the primary endpoint, follow-up invasive coronary angiography will be performed. Secondary endpoints comprise individual components of MACE at 1, 3 and 5 years follow-up, PCI-related MI, MI >48 hours after index PCI, target vessel failure, target lesion revascularization, renal failure requiring renal-replacement therapy, angiographic outcomes at 3-years and quality of life (delta Seattle Angina Questionnaire, Canadian Cardiovascular Society Grading Scale and Rose Dyspnea Scale). Conclusion: PROCTOR is the first randomized trial comparing an invasive strategy of native coronary artery PCI with SVG PCI in post-CABG patients presenting with SVG failure

    On-Site Computed Tomography Versus Angiography Alone to Guide Coronary Stent Implantation: A Prospective Randomized Study

    No full text
    OBJECTIVES: The effect of intraprocedural coronary computed tomography angiography (coronary CTA) guidance on percutaneous coronary intervention (PCI) is unknown. We sought to determine the influence of CTA guidance on procedural strategies and immediate angiographic outcomes of PCI. METHODS: Sixty patients were randomized to CTA-guided PCI (29 patients, 36 lesions) or angiography-guided PCI (31 patients, 39 lesions). To enable hands-free manipulation of CTA images by the interventional cardiologist during PCI, we developed an onsite augmented-reality (AR) system comprising a mobile application and AR glass. The primary endpoints were defined as: (1) stent length; and (2) largest stent diameter according to compliance chart. Procedural strategies, two-dimensional (2D) and three-dimensional (3D) quantitative coronary angiography (QCA), and safety outcomes were compared. RESULTS: Whereas CTA guidance resulted in significantly higher frequency of stent postdilation using non-compliant (67% vs 31%; P<.01) and shorter balloons (16.6 ± 5.4 mm vs 20.5 ± 9.4 mm; P=.04) with numerically larger diameter (3.50 ± 0.63 mm vs 3.28 ± 0.45 mm; P=.10), it did not differ from angiography guidance with respect to lesion predilation, stent length, largest stent diameter according to compliance chart, and nominal stent diameter. The results of 2D- and 3D-QCA and safety outcomes were similar between groups. Neither death nor stroke occurred in either group. CONCLUSIONS: PCI under intraprocedural CTA guidance is associated with similar stent size selection and more frequent stent postdilation, resulting in comparable immediate angiographic and safety outcomes as compared with PCI under angiographic guidance alone
    corecore