1,514 research outputs found
Phase transitions in systems with two species of molecular motors
Systems with two species of active molecular motors moving on (cytoskeletal)
filaments into opposite directions are studied theoretically using driven
lattice gas models. The motors can unbind from and rebind to the filaments. Two
motors are more likely to bind on adjacent filament sites if they belong to the
same species. These systems exhibit (i) Continuous phase transitions towards
states with spontaneously broken symmetry, where one motor species is largely
excluded from the filament, (ii) Hysteresis of the total current upon varying
the relative concentrations of the two motor species, and (iii) Coexistence of
traffic lanes with opposite directionality in multi-filament systems. These
theoretical predictions should be experimentally accessible.Comment: 7 pages, 4 figures, epl style (.cls-file included), to appear in
Europhys. Lett. (http://www.edpsciences.org/epl
Lack of increased availability of root-derived C may explain the low N2O emission from low N-urine patches
Urine deposition on grassland causes significant N2O losses, which in some cases may result from increased denitrification stimulated by labile compounds released from scorched plant roots. Two 12-day experiments were conducted in 13C-labelled grassland monoliths to investigate the link between N2O production and carbon mineralization following application of low rates of urine-N. Measurements of N2O and CO2 emissions from the monoliths as well as δ13C signal of evolved CO2 were done on day -4, -1, 0, 1, 2, 4, 5, 6 and 7 after application of urine corresponding to 3.1 and 5.5 g N m-2 in the first and second experiment, respectively. The δ13C signal was also determined for soil organic matter, dissolved organic C and CO2 evolved by microbial respiration. In addition, denitrifying enzyme activity (DEA) and nitrifying enzyme activity (NEA) were measured on day -1, 2 and 7 after the first urine application event. Urine did not affect DEA, whereas NEA was enhanced 2 days after urine application. In the first experiment, urine had no significant effect on the N2O flux, which was generally low (-8 to 14 μg N2O-N m-2 h-1). After the second application event, the N2O emission increased significantly to 87 μg N2O-N m-2 h-1 and the N2O emission factor for the added urine-N was 0.18 %. However, the associated 13C signal of soil respiration was unaffected by urine. Consequently, the increased N2O emission from the simulated low N-urine patches was not caused by enhanced denitrification stimulated by labile compounds released from scorched plant roots
Transport by molecular motors in the presence of static defects
The transport by molecular motors along cytoskeletal filaments is studied
theoretically in the presence of static defects. The movements of single motors
are described as biased random walks along the filament as well as binding to
and unbinding from the filament. Three basic types of defects are
distinguished, which differ from normal filament sites only in one of the
motors' transition probabilities. Both stepping defects with a reduced
probability for forward steps and unbinding defects with an increased
probability for motor unbinding strongly reduce the velocities and the run
lengths of the motors with increasing defect density. For transport by single
motors, binding defects with a reduced probability for motor binding have a
relatively small effect on the transport properties. For cargo transport by
motors teams, binding defects also change the effective unbinding rate of the
cargo particles and are expected to have a stronger effect.Comment: 20 pages, latex, 7 figures, 1 tabl
Stochastic simulations of cargo transport by processive molecular motors
We use stochastic computer simulations to study the transport of a spherical
cargo particle along a microtubule-like track on a planar substrate by several
kinesin-like processive motors. Our newly developed adhesive motor dynamics
algorithm combines the numerical integration of a Langevin equation for the
motion of a sphere with kinetic rules for the molecular motors. The Langevin
part includes diffusive motion, the action of the pulling motors, and
hydrodynamic interactions between sphere and wall. The kinetic rules for the
motors include binding to and unbinding from the filament as well as active
motor steps. We find that the simulated mean transport length increases
exponentially with the number of bound motors, in good agreement with earlier
results. The number of motors in binding range to the motor track fluctuates in
time with a Poissonian distribution, both for springs and cables being used as
models for the linker mechanics. Cooperativity in the sense of equal load
sharing only occurs for high values for viscosity and attachment time.Comment: 40 pages, Revtex with 13 figures, to appear in Journal of Chemical
Physic
Magnetotactic bacteria Magnetic navigation on the microscale
Magnetotactic bacteria are aquatic microorganisms with the ability to swim along the field lines of a magnetic field, which in their natural environment is provided by the magnetic field of the Earth. They do so with the help of specialized magnetic organelles called magnetosomes, vesicles containing magnetic crystals. Magnetosomes are aligned along cytoskeletal filaments to give linear structures that can function as intracellular compass needles. The predominant viewpoint is that the cells passively align with an external magnetic field, just like a macroscopic compass needle, but swim actively along the field lines, propelled by their flagella. In this minireview, we give an introduction to this intriguing bacterial behavior and discuss recent advances in understanding it, with a focus on the swimming directionality, which is not only affected by magnetic fields, but also by gradients of the oxygen concentration
Deterministic and stochastic descriptions of gene expression dynamics
A key goal of systems biology is the predictive mathematical description of
gene regulatory circuits. Different approaches are used such as deterministic
and stochastic models, models that describe cell growth and division explicitly
or implicitly etc. Here we consider simple systems of unregulated
(constitutive) gene expression and compare different mathematical descriptions
systematically to obtain insight into the errors that are introduced by various
common approximations such as describing cell growth and division by an
effective protein degradation term. In particular, we show that the population
average of protein content of a cell exhibits a subtle dependence on the
dynamics of growth and division, the specific model for volume growth and the
age structure of the population. Nevertheless, the error made by models with
implicit cell growth and division is quite small. Furthermore, we compare
various models that are partially stochastic to investigate the impact of
different sources of (intrinsic) noise. This comparison indicates that
different sources of noise (protein synthesis, partitioning in cell division)
contribute comparable amounts of noise if protein synthesis is not or only
weakly bursty. If protein synthesis is very bursty, the burstiness is the
dominant noise source, independent of other details of the model. Finally, we
discuss two sources of extrinsic noise: cell-to-cell variations in protein
content due to cells being at different stages in the division cycles, which we
show to be small (for the protein concentration and, surprisingly, also for the
protein copy number per cell) and fluctuations in the growth rate, which can
have a significant impact.Comment: 23 pages, 5 figures; Journal of Statistical physics (2012
Traffic of Molecular Motors
Molecular motors perform active movements along cytoskeletal filaments and
drive the traffic of organelles and other cargo particles in cells. In contrast
to the macroscopic traffic of cars, however, the traffic of molecular motors is
characterized by a finite walking distance (or run length) after which a motor
unbinds from the filament along which it moves. Unbound motors perform Brownian
motion in the surrounding aqueous solution until they rebind to a filament. We
use variants of driven lattice gas models to describe the interplay of their
active movements, the unbound diffusion, and the binding/unbinding dynamics. If
the motor concentration is large, motor-motor interactions become important and
lead to a variety of cooperative traffic phenomena such as traffic jams on the
filaments, boundary-induced phase transitions, and spontaneous symmetry
breaking in systems with two species of motors. If the filament is surrounded
by a large reservoir of motors, the jam length, i.e., the extension of the
traffic jams is of the order of the walking distance. Much longer jams can be
found in confined geometries such as tube-like compartments.Comment: 10 pages, latex, uses Springer styles (included), to appear in the
Proceedings of "Traffic and Granular Flow 2005
- …