202 research outputs found

    Quadratic operators used in deducing exact ground states for correlated systems: ferromagnetism at half filling provided by a dispersive band

    Full text link
    Quadratic operators are used in transforming the model Hamiltonian (H) of one correlated and dispersive band in an unique positive semidefinite form coopting both the kinetic and interacting part of H. The expression is used in deducing exact ground states which are minimum energy eigenstates only of the full Hamiltonian. It is shown in this frame that at half filling, also dispersive bands can provide ferromagnetism in exact terms by correlation effects .Comment: 7 page

    A new family of matrix product states with Dzyaloshinski-Moriya interactions

    Full text link
    We define a new family of matrix product states which are exact ground states of spin 1/2 Hamiltonians on one dimensional lattices. This class of Hamiltonians contain both Heisenberg and Dzyaloshinskii-Moriya interactions but at specified and not arbitrary couplings. We also compute in closed forms the one and two-point functions and the explicit form of the ground state. The degeneracy structure of the ground state is also discussed.Comment: 15 pages, 1 figur

    Introduction to Quantum Integrability

    Full text link
    In this article we review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. The associated algebras are essentially described by the Yang-Baxter and boundary Yang-Baxter equations depending on the choice of boundary conditions. The relation between the aforementioned equations and the braid group is briefly discussed. A short review on quantum groups as well as the quantum inverse scattering method (algebraic Bethe ansatz) is also presented.Comment: 56 pages, Latex. A few typos correcte

    Implementation of Spin Hamiltonians in Optical Lattices

    Full text link
    We propose an optical lattice setup to investigate spin chains and ladders. Electric and magnetic fields allow us to vary at will the coupling constants, producing a variety of quantum phases including the Haldane phase, critical phases, quantum dimers etc. Numerical simulations are presented showing how ground states can be prepared adiabatically. We also propose ways to measure a number of observables, like energy gap, staggered magnetization, end-chain spins effects, spin correlations and the string order parameter

    Nonlinear integral equations for finite volume excited state energies of the O(3) and O(4) nonlinear sigma-models

    Full text link
    We propose nonlinear integral equations for the finite volume one-particle energies in the O(3) and O(4) nonlinear sigma-models. The equations are written in terms of a finite number of components and are therefore easier to solve numerically than the infinite component excited state TBA equations proposed earlier. Results of numerical calculations based on the nonlinear integral equations and the excited state TBA equations agree within numerical precision.Comment: numerical results adde

    Non-diagonal reflection for the non-critical XXZ model

    Full text link
    The most general physical boundary SS-matrix for the open XXZ spin chain in the non-critical regime (cosh(η)>1\cosh (\eta)>1) is derived starting from the bare Bethe ansazt equations. The boundary SS-matrix as expected is expressed in terms of Γq\Gamma_q-functions. In the isotropic limit corresponding results for the open XXX chain are also reproduced.Comment: 8 pages Late

    Exactly solvable two-dimensional quantum spin models

    Full text link
    A method is proposed for constructing an exact ground-state wave function of a two-dimensional model with spin 1/2. The basis of the method is to represent the wave function by a product of fourth-rank spinors associated with the sites of a lattice and the metric spinors corresponding to bonds between nearest neighbor sites. The function so constructed is an exact wave function of a 14-parameter model. The special case of this model depending on one parameter is analyzed in detail. The ground state is always a nondegenerate singlet, and the spin correlation functions decay exponentially with distance. The method can be generalized for models with spin 1/2 to other types of lattices.Comment: 15 pages, 9 figures, Revte

    Clinical aspects of incorporating cord clamping into stabilisation of preterm infants

    Get PDF
    Fetal to neonatal transition is characterised by major pulmonary and haemodynamic changes occurring in a short period of time. In the international neonatal resuscitation guidelines, comprehensive recommendations are available on supporting pulmonary transition and delaying clamping of the cord in preterm infants. Recent experimental studies demonstrated that the pulmonary and haemodynamic transition are intimately linked, could influence each other and that the timing of umbilical cord clamping should be incorporated into the respiratory stabilisation. We reviewed the current knowledge on how to incorporate cord clamping into stabilisation of preterm infants and the physiological-based cord clamping (PBCC) approach, with the infant's transitional status as key determinant of timing of cord clamping. This approach could result in optimal timing of cord clamping and has the potential to reduce major morbidities and mortality in preterm infants

    Exact ground states for a class of one-dimensional frustrated quantum spin models

    Full text link
    We have found the exact ground state for two frustrated quantum spin-1/2 models on a linear chain. The first model describes ferromagnet- antiferromagnet transition point. The singlet state at this point has double-spiral ordering. The second model is equivalent to special case of the spin-1/2 ladder. It has non-degenerate singlet ground state with exponentially decaying spin correlations and there is an energy gap. The exact ground state wave function of these models is presented in a special recurrent form and recurrence technics of expectation value calculations is developed.Comment: 16 pages, 3 figures, RevTe
    corecore