1,269 research outputs found

    The origins of bubbles in laboratory asset markets

    Get PDF
    In twelve sessions conducted in a typical bubble-generating experimental environment, we design a pair of assets that can detect both irrationality and speculative behavior. The specific form of irrationality we investigate is probability judgment error associated with low-probability, high-payoff outcomes. Independently, we test for speculation by comparing prices of identically paying assets in multiperiod versus single-period markets. When these tests indicate the presence of probability judgment error and speculation, bubbles are more likely to occur. This finding suggests that both factors are important bubble drivers.

    Back-reaction in a cylinder

    Get PDF
    A system is studied in which initially a strong classical electric field exists within an infinitely-long cylinder and no charges are present. Subsequently, within the cylinder, pairs of charged particles tunnel out from the vacuum and the current produced through their acceleration by the field acts back on the field, setting up plasma oscillations. This yields a rough model of phenomena that may occur in the pre-equilibrium formation phase of a quark-gluon plasma. In an infinite volume, this back-reaction has been studied in a field-theory description, and it has been found that the results of a full calculation of this sort are well represented in a much simpler transport formalism. It is the purpose here to explore that comparison for a situation involving a cylindrical volume of given radius.Comment: 19 pages plus 13 figure

    Pair creation in transport equations using the equal-time Wigner function

    Full text link
    Based on the equal-time Wigner function for the Klein-Gordon field, we discuss analytically the mechanism of pair creation in a classical electromagnetic field including back-reaction. It is shown that the equations of motion for the Wigner function can be reduced to a variable-frequency oscillator. The pair-creation rate results then from a calculation analogous to barrier penetration in nonrelativistic quantum mechanics. The Wigner function allows one to utilize this treatment for the formulation of an effective transport theory for the back-reaction problem with a pair-creation source term including Bose enhancement.Comment: 19 pages, LaTeX, UFTP 316/199

    State-Space Based Approach to Particle Creation in Spatially Uniform Electric Fields

    Full text link
    Our formalism described recently in (Dolby et al, hep-th/0103228) is applied to the study of particle creation in spatially uniform electric fields, concentrating on the cases of a time-invariant electric field and a so-called `adiabatic' electric field. Several problems are resolved by incorporating the `Bogoliubov coefficient' approach and the `tunnelling' approaches into a single consistent, gauge invariant formulation. The value of a time-dependent particle interpretation is demonstrated by presenting a coherent account of the time-development of the particle creation process, in which the particles are created with small momentum (in the frame of the electric field) and are then accelerated by the electric field to make up the `bulge' of created particles predicted by asymptotic calculations. An initial state comprising one particle is also considered, and its evolution is described as being the sum of two contributions: the `sea of current' produced by the evolved vacuum, and the extra current arising from the initial particle state.Comment: 36 pages, 16 figure

    Анализ принципиальных схем отклонителей

    Get PDF

    Schwinger Mechanism for Gluon Pair Production in the Presence of Arbitrary Time Dependent Chromo-Electric Field

    Full text link
    We study Schwinger mechanism for gluon pair production in the presence of arbitrary time-dependent chromo-electric background field Ea(t)E^a(t) with arbitrary color index aa=1,2,...8 in SU(3) by directly evaluating the path integral. We obtain an exact expression for the probability of non-perturbative gluon pair production per unit time per unit volume and per unit transverse momentum dWd4xd2pT\frac{dW}{d^4x d^2p_T} from arbitrary Ea(t)E^a(t). We show that the tadpole (or single gluon) effective action does not contribute to the non-perturbative gluon pair production rate dWd4xd2pT\frac{dW}{d^4x d^2p_T}. We find that the exact result for non-perturbative gluon pair production is independent of all the time derivatives dnEa(t)dtn\frac{d^nE^a(t)}{dt^n} where n=1,2,....n=1,2,....\infty and has the same functional dependence on two casimir invariants [Ea(t)Ea(t)][E^a(t)E^a(t)] and [dabcEa(t)Eb(t)Ec(t)]2[d_{abc}E^a(t)E^b(t)E^c(t)]^2 as the constant chromo-electric field EaE^a result with the replacement: EaEa(t)E^a \to E^a(t). This result may be relevant to study the production of a non-perturbative quark-gluon plasma at RHIC and LHC.Comment: 13 pages latex, Published in European Physical Journal

    Pair creation: back-reactions and damping

    Get PDF
    We solve the quantum Vlasov equation for fermions and bosons, incorporating spontaneous pair creation in the presence of back-reactions and collisions. Pair creation is initiated by an external impulse field and the source term is non-Markovian. A simultaneous solution of Maxwell's equation in the presence of feedback yields an internal current and electric field that exhibit plasma oscillations with a period tau_pl. Allowing for collisions, these oscillations are damped on a time-scale, tau_r, determined by the collision frequency. Plasma oscillations cannot affect the early stages of the formation of a quark-gluon plasma unless tau_r >> tau_pl and tau_pl approx. 1/Lambda_QCD approx 1 fm/c.Comment: 16 pages, 6 figure, REVTEX, epsfig.st

    Dileptons from Disoriented Chiral Condensates

    Get PDF
    Disoriented chiral condensates or long wavelength pionic oscillations and their interaction with the thermal environment can be a significant source of dileptons. We calculate the yield of such dilepton production within the linear sigma model, both in a quantal mean-field treatment and in a semi-classical approximation. We then illustrate the basic features of the dilepton spectrum in a schematic model. We find that dilepton yield with invariant mass near and below 2mπ2m_{\pi} due to the soft pion modes can be up to two orders of magnitude larger than the corresponding equilibrium yield.Comment: 22 pages, 8 figures, uses epsf-styl
    corecore