Abstract

A system is studied in which initially a strong classical electric field exists within an infinitely-long cylinder and no charges are present. Subsequently, within the cylinder, pairs of charged particles tunnel out from the vacuum and the current produced through their acceleration by the field acts back on the field, setting up plasma oscillations. This yields a rough model of phenomena that may occur in the pre-equilibrium formation phase of a quark-gluon plasma. In an infinite volume, this back-reaction has been studied in a field-theory description, and it has been found that the results of a full calculation of this sort are well represented in a much simpler transport formalism. It is the purpose here to explore that comparison for a situation involving a cylindrical volume of given radius.Comment: 19 pages plus 13 figure

    Similar works