33 research outputs found
Guidance, navigation, and control study for a solar electric propulsion spacecraft
A preliminary investigation of a lunar-comet rendezvous mission using a solar electric propulsion (SEP) spacecraft was performed in two phases.The first phase involved exploration of the moon and the second involved rendezvous with a comet. The initial phase began with a chemical propulsion translunar injection and chemical insertion into a lunar orbit, followed by a low thrust SEP transfer to a circular, polar, low-lunar orbit. After collecting scientific data at the moon, the SEP spacecraft performed a spiral lunar escape maneuver to begin the interplanetary leg of the mission. After escape from the Earth-moon system, the SEP spacecraft maneuvered in interplanetary space and performed a rendezvous with a comet.The immediate goal of this study was to demonstrate the feasibility of using a low-thrust SEP spacecraft for orbit transfer to both the moon and a comet. Another primary goal was to develop a computer optimization code which would be robust enough to obtain minimum-fuel rendezvous trajectories for a wide range of comets
Optimal lunar trajectories for a combined chemical-electric propulsion spacecraft
Spacecraft which utilize electric propulsion (EP) systems are capable of delivering a greater payload fraction compared to spacecraft using conventional chemical propulsion systems. Several researchers have investigated numerous applications of low-thrust EP including a manned Mars mission, scientific missions to the outer planets, and lunar missions. In contrast, the study of optimal combined high and low-thrust spacecraft trajectories has been limited. In response to the release of NASA's 1994 Announcement of Opportunity (AO) for Discovery class interplanetary exploration missions, a preliminary investigation of a lunar comet rendezvous mission using a solar electric propulsion (SEP) spacecraft was performed. The Discovery mission (eventually named Diana) was envisioned to be a two-phase scientific exploration mission: the first phase involved exploration of the moon and second phase involved rendezvous with a comet. The initial phase began with a chemical propulsion translunar injection and chemical insertion into a lunar orbit, followed by a low-thrust SEP transfer to a circular, polar, low-lunar orbit (LLO). After scientific data was collected at the moon, the SEP spacecraft performed a spiral lunar escape maneuver to begin the interplanetary leg of the mission. After escape from the Earth-moon system, the SEP spacecraft maneuvered in interplanetary space and performed a rendezvous with a short period comet. An initial study that demonstrated the feasibility of using EP for the lunar and comet orbit transfer was performed under the grant NAG3-1581. This final report is a continuation of the initial research efforts in support of the Discovery mission proposal that was submitted to NASA Headquarters in October 1994. Section 2 discusses the lunar orbit transfer phase of the Diana mission which involves both chemical and electric propulsion stages. Section 3 discusses the chemical lunar orbit insertion (LOI) burn optimization. Finally, section 4 presents the conclusions of this research effort
Trajectory Optimization of an Interstellar Mission Using Solar Electric Propulsion
This paper presents several mission designs for heliospheric boundary exploration using spacecraft with low-thrust ion engines as the primary mode of propulsion The mission design goal is to transfer a 200-kg spacecraft to the heliospheric boundary in minimum time. The mission design is a combined trajectory and propulsion system optimization problem. Trajectory design variables include launch date, launch energy, burn and coast arc switch times, thrust steering direction, and planetary flyby conditions. Propulsion system design parameters include input power and specific impulse. Both SEP and NEP spacecraft arc considered and a wide range of launch vehicle options are investigated. Numerical results are presented and comparisons with the all chemical heliospheric missions from Ref 9 are made
Advanced Propulsion for Geostationary Orbit Insertion and North-South Station Keeping
Solar electric propulsion (SEP) technology is currently being used for geostationary satellite station keeping to increase payload mass. Analyses show that advanced electric propulsion technologies can be used to obtain additional increases in payload mass by using these same technologies to perform part of the orbit transfer. In this work three electric propulsion technologies are examined at two power levels for an Atlas 2AS class spacecraft. The on-board chemical propulsion apogee engine fuel is reduced to allow the use of electric propulsion. A numerical optimizer is used to determine the chemical burns which will minimize the electric propulsion transfer time. Results show that for a 1550 kg Atlas 2AS class payload, increases in net mass (geostationary satellite mass less wet propulsion system mass) of 150 to 800 kg are possible using electric propulsion for station keeping, advanced chemical engines for part of the transfer, and electric propulsion for the remainder of the transfer. Trip times are between one and four months
Advanced Propulsion for Geostationary Orbit Insertion and North-South Station Keeping
Solar electric propulsion technology is currently being used for geostationary satellite station keeping. Analyses show that electric propulsion technologies can be used to obtain additional increases in payload mass by using them to perform part of the orbit transfer. Three electric propulsion technologies are examined at two power levels for geostationary insertion of an Atlas IIAS class spacecraft. The onboard chemical propulsion apogee engine fuel is reduced in this analysis to allow the use of electric propulsion. A numerical optimizer is used to determine the chemical burns that will minimize the electric propulsion transfer times. For a 1550-kg Atlas IIAS class payload, increases in net mass (geostationary satellite mass less wet propulsion system mass) of 150-800 kg are enabled by using electric propulsion for station keeping, advanced chemical engines for part of the transfer, and electric propulsion for the remainder of the transfer. Trip times are between one and four months
Dynamic systems: modeling, simulation, and control
Wiley introduces a new offering in dynamic systems—Dynamic Systems: Modeling, Simulation, and Control by Craig Kluever. This text highlights essential topics such as analysis, design, and control of physical engineering systems, often composed of interacting mechanical, electrical and fluid subsystem components. Dynamic Systems: Modeling, Simulation, and Control is intended for an introductory course in dynamic systems and control, and written for mechanical engineering and other engineering curricula. Major topics covered in this text include mathematical modeling, system-response analysis, and an introduction to feedback control systems. Dynamic Systems integrates an early introduction to numerical simulation using MATLAB®’s Simulink for integrated systems. Simulink® and MATLAB® tutorials for both software programs will also be provided. The author’s text also has a strong emphasis on real-world case studies. Derived from top-tier engineering from the AMSE Journal of Dynamic Systems, Measurement, and Control, case studies are leveraged to demonstrate fundamental concepts as well as the analysis of complex engineering systems. In addition, Dynamic Systems delivers a wide variety of end of chapter problems, including conceptual problems, MATLAB® problems, and Engineering Application problems