9 research outputs found

    Magma Plumbing During the 2014-2015 Eruption of Fogo (Cape Verde Islands)

    Get PDF
    Phenocrysts in volcanic rocks are recorders of magmatic processes that have occurred at depth before and during a volcanic eruption. Our petrological investigations of stratigraphically controlled tephrite and phonotephrite samples from the latest eruption of Fogo (Cape Verde Islands) aimed to reconstructing magma storage and transport. The dates of sample emplacement have been determined using satellite instrument - derived high resolution thermal infrared maps. All samples are strongly phyric and commonly contain complexly zoned clinopyroxene crystals and cumulate fragments. Clinopyroxenes from all samples exhibit 10-50 mu m wide rim zones, inferred to have grown in a few days to weeks during the ongoing eruption as a consequence of H2O loss from the melt. Clinopyroxene-melt thermobarometry using tephrite groundmass compositions suggests that the rims formed at upper mantle pressures of around 600 MPa (21 km depth). This level is interpreted to reflect temporary reduction in magma ascent velocity by near-isobaric movement through a complex storage system. Previously, the tephrite magma had accumulated at a deeper level, possibly between 700 and 900 MPa as indicated by clinopyroxene cores (Mata et al., 2017). The cause for H2O loss initiating rim growth could be degassing after rise of the magma from the deeper level, or CO(2)flushing by a carbonic fluid phase released at depth. Corresponding data from phonotephrites indicate last equilibration at around 440 MPa (16 km);the phonotephrite magma is inferred to be a residuum from an earlier magmatic event that was entrained by advancing tephrite. Microthermometry of CO2-dominated fluid inclusions in tephrite clinopyroxenes results in pressures of around 330 MPa (12 km), indicating another short pause in magma ascent in the lowermost crust. Rim zonations of olivine phenocrysts indicate that after leaving this final stalling zone, the magma ascended to the surface in less than half a day. In strong contrast to these petrological equilibration depths, seismic events precursory to the eruption were located at < 5 km below sea level, with only two exceptions at 17 and 21 km depth consistent with our barometry. Our results enhance the understanding of this potentially dangerous volcano, which helps to interpret future pre-eruptive unrest

    S-rich apatite-hosted glass inclusions in xenoliths from La Palma: constraints on the volatile partitioning in evolved alkaline magmas

    No full text
    International audienceThe composition of S-rich apatite, of volatile-rich glass inclusions in apatite, and of interstitial glasses in alkaline xenoliths from the 1949 basanite eruption in La Palma has been investigated to constrain the partitioning of volatiles between apatite and alkali-rich melts. The xenoliths are interpreted as cumulates from alkaline La Palma magmas. Apatite contains up to 0.89 wt% SO3 (3560 ppm S), 0.31 wt% Cl, and 0.66 wt% Ce2O3. Sulfur is incorporated in apatite via several independent exchange reactions involving (P5+, Ca2+) vs. (S6+, Si4+, Na+, and Ce3+). The concentration of halogens in phonolitic to trachytic glasses ranges from 0.15 to 0.44 wt% for Cl and from 0.2 wt% SO3). D (S) (apatite/glass) is only slightly dependent on the melt composition and can be expressed as: SO3 apatite (wt%) = 0.157 * ln SO3 glass (wt%) + 0.9834. The phonolitic compositions of glass inclusions in amphibole and hauyne are very similar to evolved melts erupted on La Palma. The lower sulfur content and the higher Cl content in the phonolitic melt compared to basaltic magmas erupted in La Palma suggest that during magma evolution the crystallization of hauyne and pyrrhotite probably buffered the sulfur content of the melt, whereas the evolution of Cl concentration reflects an incompatible behavior. Trachytic compositions similar to those of the (water-rich) glass inclusions analyzed in apatite and clinopyroxene are not found as erupted products. These compositions are interpreted to be formed by the reaction between water-rich phonolitic melt and peridotite wall-rock

    Geochemistry of a new Enriched Mantle Type Locality in the Northern Hemisphere: Implications for the Origin of the EM-I Source

    No full text
    Late Cretaceous (66.2 ± 0.5 Ma amphibole and 66.7 ± 0.2 Ma phlogopite 40Ar/39Ar ages) nephelinitic volcanic rocks from Godzilla Seamount in the eastern North Atlantic (34°N latitude) have trace element and Sr–Nd–Pb–Hf-isotope compositions similar to the Enriched Mantle I (EM-I) endmember, except for their low 207Pb/204Pb relative to 206Pb/204Pb ratios (206Pb/204Pbin = 17.7, 207Pb/204Pbin = 15.34) plotting below the Northern Hemisphere Reference Line on the uranogenic Pb isotope diagram. O isotope data on amphibole separates are mantle-like (δ18O = 5.6–5.8‰). Age and location of the isolated Godzilla Seamount, however, preclude it from being derived from the Madeira or Canary hotspots, making a lower-mantle origin unlikely. Therefore we propose derivation from a shallow (lithospheric/asthenospheric) melting anomaly. As observed in mid-ocean-ridge and ocean-island basalts, there is a systematic decrease of 207Pb/204Pb ratios (and Δ7/4) in the individual EM-I endmember type localities towards northern latitudes with Godzilla lying on the extension of this trend. This trend is mirrored in ultra-potassic volcanic rocks such as lamproites and kimberlites, which reflect the composition of enriched subcontinental lithospheric mantle. Therefore, a global pattern in 207Pb/204Pb ratios and Δ7/4 is suggested. The geochemical composition of EM-I endmember type localities, including Godzilla lavas, and the enriched (DUPAL) anomaly in the southern hemisphere could reflect derivation from ancient, metasomatized subcontinental lithospheric mantle. We propose a two-stage model to explain the trace element and isotopic composition of the EM-I mantle endmember localities worldwide: 1) during the early history of the Earth, subcontinental lithosphere was metasomatized by melts from subducted slabs along convergent margins generating high μ (238U/204Pb) sources, and 2) as the Earth cooled, hydrous fluids replaced hydrous melts as the main slab component metasomatizing the subcontinental lithospheric mantle (generating EM-I sources with lower μ). In accordance with this model, the global variations in 207Pb/204Pb ratios and Δ7/4 could reflect geographic differences in μ and/or the age at which the transition from stages 1 to 2 took place in the Archaean lithosphere. The model would require a re-definition of the EM-I endmember to low 206Pb/204Pb, high 208Pb/204Pb (positive Δ8/4) but variable 207Pb/204Pb (positive and negative Δ7/4)

    Recurrent Local Melting of Metasomatised Lithospheric Mantle in Response to Continental Rifting: Constraints from Basanites and Nephelinites/Melilitites from SE Germany

    No full text
    Cenozoic primitive basanites, nephelinites and melilitites from the Heldburg region, SE Germany, are high-MgO magmas (8.5-14.1 wt % MgO), with low SiO2 (34.2-47.1 wt %) and low to moderately high Al2O3 (9.0-15.5 wt %) and CaO (8.7-12.7 wt %). The Ni and Cr contents of most samples are up to 470 ppm and 640 ppm, respectively, and match those inferred for primary melts. In multi-element diagrams, all samples are highly enriched in incompatible trace elements with chondrite-normalised La/Yb = 19-45, strongly depleted in Rb and K, with primitive mantle normalised K/La = 0.15-0.72, and moderately depleted in Pb. The initial Sr-Nd-Hf isotope compositions (Sr-87/Sr-86 = 0.7033-0.7051, Nd-143/Nd-144 = 0.51279-0.51288 and Hf-176/Hf-177 = 0.28284-0.28294) fall within the range observed for other Tertiary volcanic rocks of the Central European Volcanic Province, whereas Pb-208/Pb-204 and Pb-206/Pb-204 (38.42-38.88 and 18.49-18.98) are distinctly lower at comparable Pb-207/Pb-204 (15.60-15.65). Trace element modelling and pressure-temperature estimates based on major element compositions and experimental data suggest that the nephelinites/melilitites formed within the lowermost lithospheric mantle, close to the lithosphere-asthenosphere boundary, by similar to 3-5% partial melting of a highly enriched, metasomatised, carbonated phlogopite-bearing garnet-lherzolite at temperatures 4 GPa infiltrated the thermal boundary layer at the base of the lithospheric mantle and imprinted a crustal lead isotope, and to a minor extent crustal Sr, Nd and Hf isotope signatures. They also reduced Nb/U, Ce/Pb, Lu/Hf, Sm/Nd, U/Pb and Th/Pb, but increased Rb/Sr and Nb/Ta and amplified the enrichment of LILE and LREE relative to HREE. This lead to the highly-enriched trace element patterns observed in both sample suites, and to overall less radiogenic Pb-206/Pb-204 and 208Pb/204Pb compared to other continental basalts in Central Europe, and to less radiogenic Hf-176/Hf-177 and Nd-143/Nd-144 that plot distinctly below the terrestrial mantle array. Temporal evolution of magmatism in the Heldburg region coincides with the changing Tertiary intraplate stress field in Central Europe, which developed in response to the Alpine orogeny. Magmatism was most probably caused in response to lithosphere deformation and perturbation of the thermal boundary layer, and not by actively upwelling asthenosphere
    corecore