492 research outputs found

    A Chandra X-ray detection of the L dwarf binary Kelu-1: Simultaneous Chandra and Very Large Array observations

    Full text link
    Magnetic activity in ultracool dwarfs, as measured in X-rays and Hα\alpha, shows a steep decline after spectral type M7-M8. So far, no L dwarf has been detected in X-rays. In contrast, L dwarfs may have higher radio activity than M dwarfs. We observe L and T dwarfs simultaneously in X-rays and radio to determine their level of magnetic activity in the context of the general decline of magnetic activity with cooler effective temperatures. The field L dwarf binary Kelu-1 was observed simultaneously with Chandra and the Very Large Array. Kelu-1AB was detected in X-rays with LX=2.9−1.3+1.8×1025L_{\rm X} = 2.9_{-1.3}^{+1.8} \times 10^{25} erg/s, while it remained undetected in the radio down to a 3σ3 \sigma limit of LR≤1.4×1013L_{\rm R} \leq 1.4 \times 10^{13} erg/s/Hz. We argue that, whereas the X-ray and Hα\alpha emissions decline in ultracool dwarfs with decreasing effective temperature, the radio luminosity stays (more or less) constant across M and early-L dwarfs. The radio surface flux or the luminosity may better trace magnetic activity in ultracool dwarfs than the ratio of the luminosity to the bolometric luminosity. Deeper radio observations (and at short frequencies) are required to determine if and when the cut-off in radio activity occurs in L and T dwarfs, and what kind of emission mechanism takes place in ultracool dwarfs.Comment: Accepted for publication as a Letter in Astronomy & Astrophysic

    The ν\nu-cleus experiment: A gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering

    Full text link
    We discuss a small-scale experiment, called ν\nu-cleus, for the first detection of coherent neutrino-nucleus scattering by probing nuclear-recoil energies down to the 10 eV-regime. The detector consists of low-threshold CaWO4_4 and Al2_2O3_3 calorimeter arrays with a total mass of about 10 g and several cryogenic veto detectors operated at millikelvin temperatures. Realizing a fiducial volume and a multi-element target, the detector enables active discrimination of γ\gamma, neutron and surface backgrounds. A first prototype Al2_2O3_3 device, operated above ground in a setup without shielding, has achieved an energy threshold of ∼20{\sim20} eV and further improvements are in reach. A sensitivity study for the detection of coherent neutrino scattering at nuclear power plants shows a unique discovery potential (5σ\sigma) within a measuring time of ≲2{\lesssim2} weeks. Furthermore, a site at a thermal research reactor and the use of a radioactive neutrino source are investigated. With this technology, real-time monitoring of nuclear power plants is feasible.Comment: 14 pages, 19 figure

    Bid chimeras indicate that most BH3-only proteins can directly activate Bak and Bax, and show no preference for Bak versus Bax

    Get PDF
    The mitochondrial pathway of apoptosis is initiated by Bcl-2 homology region 3 (BH3)-only members of the Bcl-2 protein family. On upregulation or activation, certain BH3-only proteins can directly bind and activate Bak and Bax to induce conformation change, oligomerization and pore formation in mitochondria. BH3-only proteins, with the exception of Bid, are intrinsically disordered and therefore, functional studies often utilize peptides based on just their BH3 domains. However, these reagents do not possess the hydrophobic membrane targeting domains found on the native BH3-only molecule. To generate each BH3-only protein as a recombinant protein that could efficiently target mitochondria, we developed recombinant Bid chimeras in which the BH3 domain was replaced with that of other BH3-only proteins (Bim, Puma, Noxa, Bad, Bmf, Bik and Hrk). The chimeras were stable following purification, and each immunoprecipitated with full-length Bcl-xL according to the specificity reported for the related BH3 peptide. When tested for activation of Bak and Bax in mitochondrial permeabilization assays, Bid chimeras were ~1000-fold more effective than the related BH3 peptides. BH3 sequences from Bid and Bim were the strongest activators, followed by Puma, Hrk, Bmf and Bik, while Bad and Noxa were not activators. Notably, chimeras and peptides showed no apparent preference for activating Bak or Bax. In addition, within the BH3 domain, the h0 position recently found to be important for Bax activation, was important also for Bak activation. Together, our data with full-length proteins indicate that most BH3-only proteins can directly activate both Bak and Bax

    Dark-Photon Search using Data from CRESST-II Phase 2

    Full text link
    Identifying the nature and origin of dark matter is one of the major challenges for modern astro and particle physics. Direct dark-matter searches aim at an observation of dark-matter particles interacting within detectors. The focus of several such searches is on interactions with nuclei as provided e.g. by Weakly Interacting Massive Particles. However, there is a variety of dark-matter candidates favoring interactions with electrons rather than with nuclei. One example are dark photons, i.e., long-lived vector particles with a kinetic mixing to standard-model photons. In this work we present constraints on this kinetic mixing based on data from CRESST-II Phase 2 corresponding to an exposure before cuts of 52\,kg-days. These constraints improve the existing ones for dark-photon masses between 0.3 and 0.7\,keV/c2^2.Comment: submitted EPJ

    Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground

    Full text link
    Models for light dark matter particles with masses below 1 GeV/c2^2 are a natural and well-motivated alternative to so-far unobserved weakly interacting massive particles. Gram-scale cryogenic calorimeters provide the required detector performance to detect these particles and extend the direct dark matter search program of CRESST. A prototype 0.5 g sapphire detector developed for the ν\nu-cleus experiment has achieved an energy threshold of Eth=(19.7±0.9)E_{th}=(19.7\pm 0.9) eV, which is one order of magnitude lower than previous results and independent of the type of particle interaction. The result presented here is obtained in a setup above ground without significant shielding against ambient and cosmogenic radiation. Although operated in a high-background environment, the detector probes a new range of light-mass dark matter particles previously not accessible by direct searches. We report the first limit on the spin-independent dark matter particle-nucleon cross section for masses between 140 MeV/c2^2 and 500 MeV/c2^2.Comment: 6 pages, 6 figures, v3: ancillary files added, v4: high energy spectrum (0.6-12keV) added to ancillary file

    Limits on Dark Matter Effective Field Theory Parameters with CRESST-II

    Full text link
    CRESST is a direct dark matter search experiment, aiming for an observation of nuclear recoils induced by the interaction of dark matter particles with cryogenic scintillating calcium tungstate crystals. Instead of confining ourselves to standard spin-independent and spin-dependent searches, we re-analyze data from CRESST-II using a more general effective field theory (EFT) framework. On many of the EFT coupling constants, improved exclusion limits in the low-mass region (< 3-4 GeV) are presented.Comment: 7 pages, 9 figure

    Exploring CEvNS with NUCLEUS at the Chooz Nuclear Power Plant

    Full text link
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) offers a unique way to study neutrino properties and to search for new physics beyond the Standard Model. Nuclear reactors are promising sources to explore this process at low energies since they deliver large fluxes of (anti-)neutrinos with typical energies of a few MeV. In this paper, a new-generation experiment to study CEν\nuNS is described. The NUCLEUS experiment will use cryogenic detectors which feature an unprecedentedly low energy threshold and a time response fast enough to be operated in above-ground conditions. Both sensitivity to low-energy nuclear recoils and a high event rate tolerance are stringent requirements to measure CEν\nuNS of reactor antineutrinos. A new experimental site, denoted the Very-Near-Site (VNS) at the Chooz nuclear power plant in France is described. The VNS is located between the two 4.25 GWth_{\mathrm{th}} reactor cores and matches the requirements of NUCLEUS. First results of on-site measurements of neutron and muon backgrounds, the expected dominant background contributions, are given. In this paper a preliminary experimental setup with dedicated active and passive background reduction techniques is presented. Furthermore, the feasibility to operate the NUCLEUS detectors in coincidence with an active muon-veto at shallow overburden is studied. The paper concludes with a sensitivity study pointing out the promising physics potential of NUCLEUS at the Chooz nuclear power plant
    • …
    corecore