114 research outputs found

    The pursuit of isotopic and molecular fire tracers in the polar atmosphere and cryosphere

    Get PDF
    We present an overview of recent multidisciplinary, multi-institutional efforts to identify and date major sources of combustion aerosol in the current and paleoatmospheres. The work was stimulated, in part, by an atmospheric particle \u27sample of opportunity\u27 collected at Summit, Greenland in August 1994, that bore the 14C imprint of biomass burning. During the summer field seasons of 1995 and 1996, we collected air filter, surface snow and snowpit samples to investigate chemical and isotopic evidence of combustion particles that had been transported from distant fires. Among the chemical tracers employed for source identification are organic acids, potassium and ammonium ions, and elemental and organic components of carbonaceous particles. Ion chromatography, performed by members of the Climate Change Research Center (University of New Hampshire), has been especially valuable in indicating periods at Summit that were likely to have been affected by the long range transport of biomass burning aerosol. Univariate and multivariate patterns of the ion concentrations in the snow and ice pinpointed surface and snowpit samples for the direct analysis of particulate (soot) carbon and carbon isotopes. The research at NIST is focusing on graphitic and polycyclic aromatic carbon, which serve as almost certain indicators of fire, and measurements of carbon isotopes, especially 14C, to distinguish fossil and biomass combustion sources. Complementing the chemical and isotopic record, are direct \u27visual\u27 (satellite imagery) records and less direct backtrajectory records, to indicate geographic source regions and transport paths. In this paper we illustrate the unique way in which the synthesis of the chemical, isotopic, satellite and trajectory data enhances our ability to develop the recent history of the formation and transport of soot deposited in the polar snow and ice

    Synthesis and Characterization of Thermally and Chemically Gelling Injectable Hydrogels for Tissue Engineering

    Get PDF
    Novel, injectable hydrogels were developed that solidify through a dual-gelation, physical and chemical, mechanism upon preparation and elevation of temperature to 37°C. A thermogelling, poly(N-isopropylacrylamide)-based macromer with pendant epoxy rings and a hydrolyticallydegradable polyamidoamine-based diamine crosslinker were synthesized, characterized, and combined to produce in situ forming hydrogel constructs. Network formation through the epoxyamine reaction was shown to be rapid and facile, and the progressive incorporation of the hydrophilic polyamidoamine crosslinker into the hydrogel was shown to mitigate the often problematic tendency of thermogelling materials to undergo significant post-formation gel syneresis. The results suggest that this novel class of injectable hydrogels may be attractive substrates for tissue engineering applications due to the synthetic versatility of the component materials and beneficial hydrogel gelation kinetics and stability

    A critical evaluation of interlaboratory data on total, elemental, and isotopic carbon in the carbonaceous particle reference material, NIST SRM 1649a

    Get PDF
    Because of increased interest in the marine and atmospheric sciences in elemental carbon (EC), or black carbon (BC) or soot carbon (SC), and because of the difficulties in analyzing or even defining this pervasive component of particulate carbon, it has become quite important to have appropriate reference materials for intercomparison and quality control. The NIST "urban dust" Standard Reference Material? SRM 1649a is useful in this respect, in part because it comprises a considerable array of inorganic and organic species, and because it exhibits a large degree of (14C) isotopic heterogeneity, with biomass carbon source contributions ranging from about 2 % (essentially fossil aliphatic fraction) to about 32 % (polar fraction). A primary purpose of this report is to provide documentation for the new isotopic and chemical particulate carbon data for the most recent (31 Jan. 2001) SRM 1649a Certificate of Analysis. Supporting this is a critical review of underlying international intercomparison data and methodologies, provided by 18 teams of analytical experts from 11 institutions. Key results of the intercomparison are: (1) a new, Certified Value for total carbon (TC) in SRM 1649a; (2) 14C Reference Values for total carbon and a number of organic species, including for the first time 8 individual PAHs; and (3) elemental carbon (EC) Information Values derived from 13 analytical methods applied to this component. Results for elemental carbon, which comprised a special focus of the intercomparison, were quite diverse, reflecting the confounding of methodological-matrix artifacts, and methods that tended to probe more or less refractory regions of this universal, but ill-defined product of incomplete combustion. Availability of both chemical and 14C speciation data for SRM 1649a holds great promise for improved analytical insight through comparative analysis (e.g., fossil/ biomass partition in EC compared to PAH), and through application of the principle of isotopic mass balance.Carrie, L. A., Benner, B. A., Kessler, J. D., Klinedinst, D. B., Klouda, G. A., Marolf, J. V., . . . Schmid, H. (2002). A Critical Evaluation of Interlaboratory Data on Total, Elemental, and Isotopic Carbon in the Carbonaceous Particle Reference Material, NIST SRM 1649a. Journal of Research of the National Institute of Standards and Technology, 107(3), 279-298

    Factorial Design Techniques Applied to Optimization of AMS Graphite Target Preparation

    No full text
    From the 14th International Radiocarbon Conference held in Tucson, AZ, May 20-24, 1991.Many factors influence the preparation and quality of graphite targets for 14C accelerator mass spectrometry (AMS). We identified four factors (sample size, HZ pressure, catalyst temperature and pretreatment time) as potentially critical, and investigated their effects on two particular characteristics; the integrated rates of CO2 reduction (to graphite) and methane production. We used a 2-level fractional factorial experimental design and determined chemical reduction yield rates through manometry and partial pressure monitoring of residual gases by mass spectrometry. Chemical reduction yield rates ranged from 0.2% to 6.2% per hour. With respect to their influence on percent yield rate, the factors we studied were ordered as; sample size > level of hydrogen > pretreatment of the catalyst. The temperature of the catalyst, and the sample size x hydrogen (2-factor) interaction, were only marginally influential. Other interactions did not appear to be significantly important. We estimated uncertainty in the order of influence and magnitudes of the effects by the Monte Carlo method of error propagation. We observed significant methane production in only one experiment, which suggests that methane originates from indigenous carbon in untreated iron catalyst only in the presence of hydrogen and only at thermodynamically favorable temperatures. This exploratory investigation indicates that factorial design techniques are a useful means to investigate multivariate effects on the preparation and quality of AMS graphite targets.This material was digitized as part of a cooperative project between Radiocarbon and the University of Arizona Libraries.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    The Power of 14C Measurements Combined with Chemical Characterization for Tracing Urban Aerosol in Norway

    No full text
    From the 12th International Radiocarbon Conference held in Trondheim, June 24-28, 1985.Changing fuel patterns and increased awareness of health effects from combustion aerosols have generated considerable interest in the use of 14C as a biogenic-fossil aerosol source discriminator. Prior studies in the US demonstrated the importance of 14C measurement for estimating the wood-burning contribution to urban aerosols. The present work treats a specific air-pollution problem in the town of Elverum, Norway where large wintertime concentrations of aerosol carbon and polycyclic aromatic hydrocarbons (PAH) were suspected to come from residential woodl combustion (RWC). The problem was significant in that up to 50 micrograms/m3[C] and 490 micrograms/m3[PAH] were found during pollution episodes. Samples collected during two winters were analyzed for C, C, PAH, and several elements in the fine fraction (<3 micrometers) aerosol. Source apportionment based on these species indicated an average of ca 65% RWC-carbon (14C), ca 5% fine particle mass from motor vehicles (Pb), but negligible contributions from heavy fuel oil (Ni, V). Patterns of 14C and total C, examined as a function of temperature and PAH, indicated large increases in RWC aerosol on the coldest days, and a major RWC contribution to the PAH fraction. Patterns with inorganic species implied multiple tracer sources, and one important case of long-range transport.This material was digitized as part of a cooperative project between Radiocarbon and the University of Arizona Libraries.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    Miniature Signals and Miniature Counters: Accuracy Assurance Via Microprocessors and Multiparameter Control Techniques

    No full text
    From the 11th International Radiocarbon Conference held in Seattle, Washington, June 20-26, 1982.When 14C signals approach background levels, the validity of assumptions concerning Poisson counting statistics and measurement system stability becomes crucial in interpreting the resultant low-level counting observations. This has been demonstrated in our previous work on detection limits for non-Poisson error and it is critical in our current studies of carbonaceous pollutants, where the 14C signal from just 5 mg C is comparable to that of the background for our miniature gas proportional counters. To assure data quality, our multi-detector system is designed for the on-line monitoring of critical parameters that reflect both the (statistical) nature of the non-Poisson errors and the underlying (physical) causes. It sends >60 bits of information/pulse to a microprocessor which automatically generates, for each counting period, two-dimensional spectra and multiparameter correlation and control charts. To evaluate the validity of long-term counting of 1–10 mg C we use robust (statistical) estimators, optimal counting interval subdivision, and time series analysis of the individual pulses. New opportunities for selective sampling and chemical fractionation which come with the small sample measurement capability have led us to give special attention also to higher control levels, involving e g, isotonic heterogeneity and representative standard materials.This material was digitized as part of a cooperative project between Radiocarbon and the University of Arizona Libraries.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    AMS and Microprobe Analysis of Combused Particles in Ice and Snow

    No full text
    From the 16th International Radiocarbon Conference held in Gronigen, Netherlands, June 16-20, 1997.Ice cores and snow pits of the cryosphere contain particles that detail the history of past atmospheric air compositions. Some of these particles result from combustion processes and have undergone long-range transport to arrive in the Arctic. Recent research has focused on the separation of particulate matter from ice and snow, as well as the subsequent analysis of the separated particles for 14C with accelerator mass spectrometry (AMS) and for individual particle compositions with laser microprobe mass analysis (LAMMA). The very low particulate concentrations in Arctic samples make these measurements a challenge. The first task is to separate the particles from the ice core. Two major options exist to accomplish this separation. One option is to melt the ice and then filter the meltwater. A second option is to sublimate the ice core directly, depositing the particles onto a surface. This work demonstrates that greater control is obtained through sublimation. A suite of analytical methods has been used for the measurement of the carbon in snow and ice. Total carbon was analyzed with a carbon/nitrogen/hydrogen (CHN) analyzer. AMS was used for the determination of carbon isotopes. Since source identification of the carbonaceous particles is of primary importance here, the use of LAMMA was incorporated to link individual particle molecular-structural patterns to the same group of particles that were measured by the other techniques. Prior to this study, neither AMS nor LAMMA had been applied to particles contained in snow. This paper discusses the development and limitations of the methodology required to make these measurements.This material was digitized as part of a cooperative project between Radiocarbon and the University of Arizona Libraries.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    Urban Atmospheric 14CO and 14CH4 Measurements by Accelerator Mass Spectrometry

    No full text
    From the 12th International Radiocarbon Conference held in Trondheim, June 24-28, 1985.Atmospheric gas samples (0.1 m3) were collected at ground level during January/February 1984 in Las Vegas, Nevada for 14C/13C accelerator mass spectrometry and total abundance measurements of CO and CH4. During winter months in this locale, CO concentrations can occur at 10 to 100 times background, occasionally exceeding the National Ambient Air Quality Standard (NAAQS). Methane concentrations show a slight enhancement (-24%) above the background (non-urban troposphere) level. A comparison of CO and CH4 concentrations shows a good linear correlation which may indicate a common source. Preliminary 14C/13C results of the two species suggest that fossil emissions are the predominant source of excess CO and CH4 in the samples taken. Estimates of anthropogemc CO and CH4 are important for source apportionment of combustion emissions. In addition, this information is valuable for understanding the global CO and CH4 cycles and, therefore, human impact on climate and the stratospheric ozone layer.This material was digitized as part of a cooperative project between Radiocarbon and the University of Arizona Libraries.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    On the Origin of Carbonaceous Particles in American Cities: Results of Radiocarbon "Dating" and Chemical Characterization

    No full text
    From the 11th International Radiocarbon Conference held in Seattle, Washington, June 20-26, 1982.During the past three years radiocarbon assay has emerged as a primary tool in the quantitative assignment of sources of urban and rural particulate pollution. Its use in several major field studies has come about because of its excellent (fossil/biogenic) discriminating power, because of advances in 14C measurements of small samples, and because of the increased significance of carbonaceous particles in the atmosphere. The problem is especially important in the cities, where increased concentrations of fine particles lead to pollution episodes characterized by poor visibility and changes in the radiation balance (absorption, scattering), and immediate and possibly long-term health effects. Efforts in source apportionment in such affected areas have been based on emissions inventories, dispersion modeling, and receptor modeling – ie, chemical and physical (and statistical) characterization of particles collected at designated receptor sites. It is in the last category that 14C has become quite effective in helping to resolve particle sources. Results are presented for studies carried out in Los Angeles, Denver, and Houston which incorporated 14C measurements, inorganic and organic chemical characterization, and receptor modeling. The 14C data indicated wide ranging contributions of biogenic and fossil carbon sources – eg, <10% to 60% contemporary (biogenic) in Houston – depending on meteorological, biological, and anthropological activity. The combined (chemical, isotopic, statistical) data point to sources such as vehicles, wood combustion, power plants, and vegetation.This material was digitized as part of a cooperative project between Radiocarbon and the University of Arizona Libraries.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202
    • …
    corecore