320 research outputs found

    Leber's hereditary optic neuropathy with late disease onset: clinical and molecular characteristics of 20 patients

    Get PDF
    Background: Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease that typically causes bilateral blindness in young men. Here we describe the clinical and molecular characteristics of 20 patients with disease onset after the age of 50 years (late onset-LHON). Methods: From a cohort of 251 affected and 277 unaffected LHON carriers, we identified 20 patients with onset of visual loss after the age of 50 years. Using structured questionnaires, data including basic demographic details, age of onset, progression of visual loss and severity as well as exposure to possible environmental triggers including alcohol, smoking and illicit drugs were retrospectively collected. Groups were compared using the Mann-Whitney-U-Test for two independent groups of sampled data. Results: The proportion of late onset-LHON in our cohort was 8% (20 patients, 15 males, 5 females). The mtDNA mutations m. 11778G  > A and m. 3460G  > A were found in 16 and 4 patients, respectively. Among 89 asymptomatic carriers above the age of 50 years (28 males, 61 females), the mtDNA mutations m. 11778G > A, m. 3460G  > A and m. 14484 T  > C were found in 60, 12 and 17 carriers, respectively. Late onset-LHON patients had significantly higher mean cumulative tobacco and alcohol consumption compared with unaffected carriers. However, there was no significant difference between late onset-and typical LHON patients with regard to daily tobacco and weekly alcohol consumption before disease onset. Conclusion: As already shown for typical LHON, alcohol consumption and smoking are important trigger factors also for the late manifestation. LHON should be considered in the differential diagnosis of subacute blindness even in older patients

    TDP-43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons

    No full text
    Nuclear clearance of TDP-43 into cytoplasmic aggregates is a key driver of neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), but the mechanisms are unclear. Here, we show that TDP-43 knockdown specifically reduces the number and motility of RAB11-positive recycling endosomes in dendrites, while TDP-43 overexpression has the opposite effect. This is associated with delayed transferrin recycling in TDP-43-knockdown neurons and decreased 2-transferrin levels in patient CSF. Whole proteome quantification identified the upregulation of the ESCRT component VPS4B upon TDP-43 knockdown in neurons. Luciferase reporter assays and chromatin immunoprecipitation suggest that TDP-43 represses VPS4B transcription. Preventing VPS4B upregulation or expression of its functional antagonist ALIX restores trafficking of recycling endosomes. Proteomic analysis revealed the broad reduction in surface expression of key receptors upon TDP-43 knockdown, including ErbB4, the neuregulin 1 receptor. TDP-43 knockdown delays the surface delivery of ErbB4. ErbB4 overexpression, but not neuregulin 1 stimulation, prevents dendrite loss upon TDP-43 knockdown. Thus, impaired recycling of ErbB4 and other receptors to the cell surface may contribute to TDP-43-induced neurodegeneration by blocking trophic signaling

    TOM40 Mediates Mitochondrial Dysfunction Induced by α-Synuclein Accumulation in Parkinson's Disease.

    Get PDF
    Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson's disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery -TOM40- might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies

    Intravitreal Gene Therapy vs. Natural History in Patients With Leber Hereditary Optic Neuropathy Carrying the m.11778G>A ND4 Mutation: Systematic Review and Indirect Comparison

    Get PDF
    Objective: This work aimed to compare the evolution of visual outcomes in Leber hereditary optic neuropathy (LHON) patients treated with intravitreal gene therapy to the spontaneous evolution in prior natural history (NH) studies. Design: A combined analysis of two phase three randomized, double-masked, sham-controlled studies (REVERSE and RESCUE) and their joint long-term extension trial (CLIN06) evaluated the efficacy of rAAV2/2-ND4 vs. 11 pooled NH studies used as an external control. Subjects: The LHON subjects carried the m.11778G>A ND4 mutation and were aged ≥15 years at onset of vision loss. Methods: A total of 76 subjects received a single intravitreal rAAV2/2-ND4 injection in one eye and sham injection in the fellow eye within 1 year after vision loss in REVERSE and RESCUE. Both eyes were considered as treated due to the rAAV2/2-ND4 treatment efficacy observed in the contralateral eyes. Best corrected visual acuity (BCVA) from REVERSE, RESCUE, and CLIN06 up to 4.3 years after vision loss was compared to the visual acuity of 208 NH subjects matched for age and ND4 genotype. The NH subjects were from a LHON registry (REALITY) and from 10 NH studies. A locally estimated scatterplot smoothing (LOESS), non-parametric, local regression model was used to modelize visual acuity curves over time, and linear mixed model was used for statistical inferences. Main Outcome Measures: The main outcome measure was evolution of visual acuity from 12 months after vision loss, when REVERSE and RESCUE patients had been treated with rAAV2/2-ND4. Results: The LOESS curves showed that the BCVA of the treated patients progressively improved from month 12 to 52 after vision loss. At month 48, there was a statistically and clinically relevant difference in visual acuity of −0.33 logarithm of the minimal angle of resolution (LogMAR) (16.5 ETDRS letters equivalent) in favor of treated eyes vs. NH eyes (p < 0.01). Most treated eyes (88.7%) were on-chart at month 48 as compared to 48.1% of the NH eyes (p < 0.01). The treatment effect at last observation remained statistically and clinically significant when adjusted for age and duration of follow-up (−0.32 LogMAR, p < 0.0001). Conclusions: The m.11778G>A LHON patients treated with rAAV2/2-ND4 exhibited an improvement of visual acuity over more than 4 years after vision loss to a degree not demonstrated in NH studies. Clinical Trial Registration: NCT02652767, NCT02652780, NCT03406104, and NCT03295071

    Intravitreal Gene Therapy vs. Natural History in Patients With Leber Hereditary Optic Neuropathy Carrying the m.11778G>A ND4 Mutation: Systematic Review and Indirect Comparison

    Get PDF
    Objective: This work aimed to compare the evolution of visual outcomes in Leber hereditary optic neuropathy (LHON) patients treated with intravitreal gene therapy to the spontaneous evolution in prior natural history (NH) studies. Design: A combined analysis of two phase three randomized, double-masked, sham-controlled studies (REVERSE and RESCUE) and their joint long-term extension trial (CLIN06) evaluated the efficacy of rAAV2/2-ND4 vs. 11 pooled NH studies used as an external control. Subjects: The LHON subjects carried the m.11778G>A ND4 mutation and were aged ≥15 years at onset of vision loss. Methods: A total of 76 subjects received a single intravitreal rAAV2/2-ND4 injection in one eye and sham injection in the fellow eye within 1 year after vision loss in REVERSE and RESCUE. Both eyes were considered as treated due to the rAAV2/2-ND4 treatment efficacy observed in the contralateral eyes. Best corrected visual acuity (BCVA) from REVERSE, RESCUE, and CLIN06 up to 4.3 years after vision loss was compared to the visual acuity of 208 NH subjects matched for age and ND4 genotype. The NH subjects were from a LHON registry (REALITY) and from 10 NH studies. A locally estimated scatterplot smoothing (LOESS), non-parametric, local regression model was used to modelize visual acuity curves over time, and linear mixed model was used for statistical inferences. Main Outcome Measures: The main outcome measure was evolution of visual acuity from 12 months after vision loss, when REVERSE and RESCUE patients had been treated with rAAV2/2-ND4. Results: The LOESS curves showed that the BCVA of the treated patients progressively improved from month 12 to 52 after vision loss. At month 48, there was a statistically and clinically relevant difference in visual acuity of −0.33 logarithm of the minimal angle of resolution (LogMAR) (16.5 ETDRS letters equivalent) in favor of treated eyes vs. NH eyes (p A LHON patients treated with rAAV2/2-ND4 exhibited an improvement of visual acuity over more than 4 years after vision loss to a degree not demonstrated in NH studies. Clinical Trial Registration: NCT02652767, NCT02652780, NCT03406104, and NCT03295071

    Sengers syndrome: six novel AGK mutations in seven new families and review of the phenotypic and mutational spectrum of 29 patients

    Get PDF
    Background: Sengers syndrome is an autosomal recessive condition characterized by congenital cataract, hypertrophic cardiomyopathy, skeletal myopathy and lactic acidosis. Mutations in the acylglycerol kinase (AGK) gene have been recently described as the cause of Sengers syndrome in nine families. Methods: We investigated the clinical and molecular features of Sengers syndrome in seven new families; five families with the severe and two with the milder form. Results: Sequence analysis of AGK revealed compound heterozygous or homozygous predicted loss-of-function mutations in all affected individuals. A total of eight different disease alleles were identified, of which six were novel, homozygous c.523_524delAT (p.Ile175Tyrfs*2), c.424-1G > A (splice site), c.409C > T (p.Arg137*) and c.877 + 3G > T (splice site), and compound heterozygous c.871C > T (p.Gln291*) and c.1035dup (p.Ile346Tyrfs*39). All patients displayed perinatal or early-onset cardiomyopathy and cataract, clinical features pathognomonic for Sengers syndrome. Other common findings included blood lactic acidosis and tachydyspnoea while nystagmus, eosinophilia and cervical meningocele were documented in only either one or two cases. Deficiency of the adenine nucleotide translocator was found in heart and skeletal muscle biopsies from two patients associated with respiratory chain complex I deficiency. In contrast to previous findings, mitochondrial DNA content was normal in both tissues. Conclusion: We compare our findings to those in 21 previously reported AGK mutation-positive Sengers patients, confirming that Sengers syndrome is a clinically recognisable disorder of mitochondrial energy metabolism

    Targeting the glycine-rich domain of TDP-43 with antibodies prevents its aggregation in vitro and reduces neurofilament levels in vivo

    Get PDF
    Cytoplasmic aggregation and concomitant nuclear clearance of the RNA-binding protein TDP-43 are found in similar to 90% of cases of amyotrophic lateral sclerosis and similar to 45% of patients living with frontotemporal lobar degeneration, but no disease-modifying therapy is available. Antibody therapy targeting other aggregating proteins associated with neurodegenerative disorders has shown beneficial effects in animal models and clinical trials. The most effective epitopes for safe antibody therapy targeting TDP-43 are unknown. Here, we identified safe and effective epitopes in TDP-43 for active and potential future passive immunotherapy. We prescreened 15 peptide antigens covering all regions of TDP-43 to identify the most immunogenic epitopes and to raise novel monoclonal antibodies in wild-type mice. Most peptides induced a considerable antibody response and no antigen triggered obvious side effects. Thus, we immunized mice with rapidly progressing TDP-43 proteinopathy (rNLS8 model) with the nine most immunogenic peptides in five pools prior to TDP-43 Delta NLS transgene induction. Strikingly, combined administration of two N-terminal peptides induced genetic background-specific sudden lethality in several mice and was therefore discontinued. Despite a strong antibody response, no TDP-43 peptide prevented the rapid body weight loss or reduced phospho-TDP-43 levels as well as the profound astrogliosis and microgliosis in rNLS8 mice. However, immunization with a C-terminal peptide containing the disease-associated phosphoserines 409/410 significantly lowered serum neurofilament light chain levels, indicative of reduced neuroaxonal damage. Transcriptomic profiling showed a pronounced neuroinflammatory signature (IL-1 beta, TNF-alpha, Nf-kappa B) in rNLS8 mice and suggested modest benefits of immunization targeting the glycine-rich region. Several novel monoclonal antibodies targeting the glycine-rich domain potently reduced phase separation and aggregation of TDP-43 in vitro and prevented cellular uptake of preformed aggregates. Our unbiased screen suggests that targeting the RRM2 domain and the C-terminal region of TDP-43 by active or passive immunization may be beneficial in TDP-43 proteinopathies by inhibiting cardinal processes of disease progression

    Consensus clinical management guideline for pantothenate kinase-associated neurodegeneration (PKAN).

    Get PDF
    - Clinical experts have developed consensus opinions about the management of PKAN that can serve as a guideline for care. - Guidance is provided for diagnosis and management, treatment and surveillance, including for status dystonicus and other emergency care, and education and psychosocial support. - This guideline is a living document that will require ongoing review and revision

    Brain Abnormalities in Patients with Germline Variants in H3F3: Novel Imaging Findings and Neurologic Symptoms Beyond Somatic Variants and Brain Tumors

    Get PDF
    BACKGROUND AND PURPOSE: Pathogenic somatic variants affecting the genes Histone 3 Family 3A and 3B (H3F3) are extensively linked to the process of oncogenesis, in particular related to central nervous system tumors in children. Recently, H3F3 germline missense variants were described as the cause of a novel pediatric neurodevelopmental disorder. We aimed to investigate patterns of brain MR imaging of individuals carrying H3F3 germline variants. MATERIALS AND METHODS: In this retrospective study, we included individuals with proved H3F3 causative genetic variants and available brain MR imaging scans. Clinical and demographic data were retrieved from available medical records. Molecular genetic testing results were classified using the American College of Medical Genetics criteria for variant curation. Brain MR imaging abnormalities were analyzed according to their location, signal intensity, and associated clinical symptoms. Numeric variables were described according to their distribution, with median and interquartile range. RESULTS: Eighteen individuals (10 males, 56%) with H3F3 germline variants were included. Thirteen of 18 individuals (72%) presented with a small posterior fossa. Six individuals (33%) presented with reduced size and an internal rotational appearance of the heads of the caudate nuclei along with an enlarged and squared appearance of the frontal horns of the lateral ventricles. Five individuals (28%) presented with dysgenesis of the splenium of the corpus callosum. Cortical developmental abnormalities were noted in 8 individuals (44%), with dysgyria and hypoplastic temporal poles being the most frequent presentation. CONCLUSIONS: Imaging phenotypes in germline H3F3-affected individuals are related to brain features, including a small posterior fossa as well as dysgenesis of the corpus callosum, cortical developmental abnormalities, and deformity of lateral ventricles
    • …
    corecore