93 research outputs found

    Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada

    Get PDF
    Background: This study provides experimental evidence for biologically induced precipitation of magnesium carbonates, specifically dypingite (Mg(CO)(OH) ·5HO), by cyanobacteria from an alkaline wetland near Atlin, British Columbia. This wetland is part of a larger hydromagnesite (Mg(CO)(OH) ·4HO) playa. Abiotic and biotic processes for magnesium carbonate precipitation in this environment are compared. Results: Field observations show that evaporation of wetland water produces carbonate films of nesquehonite (MgCO ·3HO) on the water surface and crusts on exposed surfaces. In contrast, benthic microbial mats possessing filamentous cyanobacteria (Lyngbya sp.) contain platy dypingite (Mg (CO)4(OH)·5HO) and aragonite. Bulk carbonates in the benthic mats (δC avg. = 6.7%, δO avg. = 17.2%) were isotopically distinguishable from abiotically formed nesquehonite (δC avg. = 9.3%, δO avg. = 24.9%). Field and laboratory experiments, which emulated natural conditions, were conducted to provide insight into the processes for magnesium carbonate precipitation in this environment. Field microcosm experiments included an abiotic control and two microbial systems, one containing ambient wetland water and one amended with nutrients to simulate eutrophic conditions. The abiotic control developed an extensive crust of nesquehonite on its bottom surface during which [Mg] decreased by 16.7% relative to the starting concentration. In the microbial systems, precipitation occurred within the mats and was not simply due to the capturing of mineral grains settling out of the water column. Magnesium concentrations decreased by 22.2% and 38.7% in the microbial systems, respectively. Laboratory experiments using natural waters from the Atlin site produced rosettes and flakey globular aggregates of dypingite precipitated in association with filamentous cyanobacteria dominated biofilms cultured from the site, whereas the abiotic control again precipitated nesquehonite. Conclusion: Microbial mats in the Atlin wetland create ideal conditions for biologically induced precipitation of dypingite and have presumably played a significant role in the development of this natural Mg-carbonate playa. This biogeochemical process represents an important link between the biosphere and the inorganic carbon pool

    Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate

    Get PDF
    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface

    Effect of Rare Earth Ions on the Properties of Composites Composed of Ethylene Vinyl Acetate Copolymer and Layered Double Hydroxides

    Get PDF
    BACKGROUND: The study on the rare earth (RE)-doped layered double hydroxides (LDHs) has received considerable attention due to their potential applications in catalysts. However, the use of RE-doped LDHs as polymer halogen-free flame retardants was seldom investigated. Furthermore, the effect of rare earth elements on the hydrophobicity of LDHs materials and the compatibility of LDHs/polymer composite has seldom been reported. METHODOLOGY/PRINCIPAL FINDINGS: The stearate sodium surface modified Ni-containing LDHs and RE-doped Ni-containing LDHs were rapidly synthesized by a coprecipitation method coupled with the microwave hydrothermal treatment. The influences of trace amounts of rare earth ions La, Ce and Nd on the amount of water molecules, the crystallinity, the morphology, the hydrophobicity of modified Ni-containing LDHs and the adsorption of modifier in the surface of LDHs were investigated by TGA, XRD, TEM, contact angle and IR, respectively. Moreover, the effects of the rare earth ions on the interfacial compatibility, the flame retardancy and the mechanical properties of ethylene vinyl acetate copolymer (EVA)/LDHs composites were also explored in detail. CONCLUSIONS/SIGNIFICANCE: S-Ni₀.₁MgAl-La displayed more uniform dispersion and better interfacial compatibility in EVA matrix compared with other LDHs. Furthermore, the S-Ni₀.₁MgAl-La/EVA composite showed the best fire retardancy and mechanical properties in all composites

    Openness in participation, assessment, and policy making upon issues of environment and environmental health: a review of literature and recent project results

    Get PDF
    Issues of environment and environmental health involve multiple interests regarding e.g. political, societal, economical, and public concerns represented by different kinds of organizations and individuals. Not surprisingly, stakeholder and public participation has become a major issue in environmental and environmental health policy and assessment. The need for participation has been discussed and reasoned by many, including environmental legislators around the world. In principle, participation is generally considered as desirable and the focus of most scholars and practitioners is on carrying out participation, and making participation more effective. In practice also doubts regarding the effectiveness and importance of participation exist among policy makers, assessors, and public, leading even to undermining participatory practices in policy making and assessment

    Raman spectroscopic investigation of acetylation of raw cotton

    Get PDF
    Raman spectroscopy has been used to investigate raw cotton acetylation using acetic anhydride/4-dimethylaminopyridine (DMAP) catalyst blend without solvent. The Raman data further confirm successful acetylation as shown by FTIR that was demonstrated previously to be highly sensitive for determining the level of acetylation. However, the Raman peaks are much weaker than the FTIR bands. Nevertheless, the variations of the extent of acetylation estimated from both Raman and FTIR spectra with weight percent gain due to acetylation (WPG) were observed to follow the same pattern. The degrees of acetylation calculated from Raman data were also found to increase linearly with that calculated from the more sensitive FTIR technique. Raman technique is thus suitable for further development as an analytical tool for determining the acetylation level of natural cellulose fibres. Raman data have also shown that the acetylation reaction reduces the crystallinity of cotton. (c) 2005 Elsevier B.V. All rights reserved

    General Introduction

    Full text link

    X-ray diffraction and Raman spectroscopic studies of Zn-substituted carrboydite-like compounds

    Get PDF
    Hydrotalcite-like compounds of the formula NixZn6-xAl2(OH)(16)(SO4)(.)4H(2)O where x varies from 0 to 6, equivalent to a zinc-substituted carrboydite have been synthesised and characterised by X-ray diffraction, electron microscopy and vibrational spectroscopy. Both the d (003) spacing and the crystallite size are a function of the amount of zinc replacement for nickel in the carrboydite-like compounds. Transmission electron microscopy (TEM) shows the clay-like crystal structure for these hydrotalcite compounds. These compounds were characterised by vibrational spectroscopic techniques and a comparison made with the naturally occurring minerals. Additional bands in the sulphate antisymmetric stretching and bending region leads to the conclusion that the symmetry of the sulphate anion is reduced inferring the bonding of the sulphate anion to the hydrotalcite hydroxyl surface. (c) 2005 Elsevier B.V. All rights reserved
    corecore