5 research outputs found

    Entwicklung von SIVsmmPBj- und HIV-2-abgeleiteten lentiviralen Vektoren fĂŒr einen effizienten gp91phox-Gentransfer in Monozyten

    Get PDF
    SIVsmmPBj-derived lentiviral vectors are capable of efficient primary human monocyte transduction, a capacity which is linked to the viral accessory protein Vpx. To enable novel gene therapy approaches targeting monocytes, in this thesis it was aimed to generate enhanced lentiviral vectors that meet the required standards for clinical applications with respect to gene transfer efficiency and safety. The vectors were tested for their suitability in a relevant therapeutic gene transfer approach. At first, it was investigated whether vectors derived from another Vpx-carrying lentivirus reveal the same capacity for monocyte transduction as SIVsmmPBj-derived vectors. A transduction experiment using HIV-2-derived vectors in comparison to PBj-derived vectors revealed a comparable transduction capacity, thus disproving the assumed uniqueness of the PBj vectors. The further generation and analysis of expression constructs for the vpx genes of HIV-2 and SIVmac demonstrated a similar functionality in monocyte transduction as the Vpx of PBj. As VpxPBj, both Vpx proteins facilitated monocyte transduction of a vpx-deficient PBj-derived vector system. For the generation of enhanced SIVsmmPBj and HIV-2 vector systems, only the transfer vectors were optimized, since the packaging vectors available already meet current standards. At first, several modifications were introduced into an available preliminary PBj-derived transfer vector by conventional cloning. The modifications included insertions of cPPT/CTS and WPRE as well as the deletions of the remaining pol sequence, the second exons of tat end rev, and the U3-region within the 3’LTR to generate a SIN vector. Thus, beside safety enhancement, the vector titers were also increased from 9.1x105 TU/ml achieved after concentration with the initial transfer vector up to 1.1x107 TU/ml with the final transfer vector. The PBj vector retained its capability of monocyte transduction when supplemented with Vpx. This conventional method of vector enhancement is time-consuming and may result in only sub-optimal vectors, since it depends on the presence of restriction sites which may not allow deletion of all needless sequences. Moreover, mutations may accumulate during the high number of cloning and amplification steps. Therefore, a new and easier method for lentiviral transfer vector generation was conceived. Three essential segments of the viral genome (5‘ LTR, RRE, ΔU3-3’ LTR) are amplified on the template of the lentiviral wild-type genome and fused by Fusion-PCR. Further necessary elements namely the cPPT/CTS-element, MCS, and PPT are included into the resulting vector by extension of the nucleotide primers used for the PCRs. The amplified and fused vector-scaffold can easily be integrated into a plasmid backbone, followed by insertion of the expression cassette of choice. By applying this approach, two novel lentiviral transfer vectors, based on the non-human SIVsmmPBj and the human HIV-2, were derived. Vector titers achieved for PBj and HIV-2 vectors supplemented with Vpx reached up to 4.0x108 TU/ml and 5.4x108 TU/ml, respectively. The capacity for monocyte transduction was maintained. Thus, safe and efficient, state of the art HIV-2- and PBj-derived vector systems are now available for future gene therapy strategies. Finally, the new vectors were used to set up an approach for gene correction of gp91phox-deficient monocytes for the treatment of X-linked chronic granulomatous disease (xCGD). The administration of autologous, gene-corrected monocytes to counteract systemic and acute infections could lead to a decreased infection load, dissolve granulomas and therefore improve the survival rate of hematopoietic stem cell transplantation (HSCT) which is the current treatment of choice for this disease. First, methods for analysis of gp91phox function were established. Next, they were employed to demonstrate the capacity of monocytes, obtained from healthy humans or mice, for phagocytosis, oxidative burst, and Staphylococcus aureus killing. The in vivo half-life of murine monocytes in the bloodstream and their distribution to specific tissues was determined. Lastly, HIV-1 vectors were used to transfer the gp91phox gene into monocytes from gp91phox-deficient mice. This resulted in the successful restoration of the oxidative burst ability in the cells. In summary, the general suitability of the new vectors for treatment of CGD by monocyte transduction was demonstrated. The results of the mouse experiments provide the foundation for future challenge experiments to evaluate the capability of gene-corrected monocytes to kill off microbes in vivo.Vektoren, die vom simianen Immundefizienzvirus (SIV) smmPBj abgeleitet sind, besitzen die FĂ€higkeit primĂ€re humane Monozyten zu transduzieren. Diese FĂ€higkeit ist von dem viralen Protein Vpx abhĂ€ngig. Da Monozyten ein attraktives Ziel fĂŒr die Gentherapie darstellen, sollten sichere und effiziente lentivirale Vektorsysteme konstruiert werden, die den AnsprĂŒchen klinischer Applikationen gerecht werden. Anschließend sollten die Vektoren in die Entwicklung einer neuen potentiellen Anwendungsmöglichkeit integriert werden. ZunĂ€chst wurde untersucht, ob auch Vektorensysteme anderer Lentiviren, die ebenfalls ein vpx-Gen besitzen, zur Transduktion von Monozyten in der Lage sind. Es stellte sich heraus, dass HIV-2-abgeleitete Vektoren die gleiche TransduktionsfĂ€higkeit wie PBj-abgeleitete Vektoren besitzen, was die bis dahin angenommene Einzigartigkeit der PBj-Vektoren widerlegt. Zudem wurde fĂŒr die Vpx-Proteine von SIVmac und HIV-2 gezeigt, dass sie wie VpxPBj eine Transduktion von Monozyten durch PBj-abgeleitete Vektoren ermöglichen. Zur Herstellung von PBj- und HIV-2-abgeleiteten Vektoren wurden optimierte Transfervektoren generiert. Verpackungsvektoren waren fĂŒr beide Vektorsysteme bereits verfĂŒgbar. In einem ersten Schritt wurde zunĂ€chst durch aufeinanderfolgende Klonierungsschritte der bereits vorhandene, einfache PBj-Transfervektor verbessert. Hierbei wurden sowohl Verbesserungen vorgenommen, die wichtig fĂŒr die Sicherheit des Systems sind (self-inactivating (SIN)-Konfiguration, Minimierung der viralen Sequenzen) als auch Elemente integriert, die die Vektorproduktion und damit die Effizienz des Gentransfers verbessern (central polypurine tract / central termination sequence (cPPT/CTS), woodchuck hepatitis virus posttranscriptional regulatory element (WPRE)). Mit den graduellen Verbesserungen der PBj-abgeleiteten Transfervektoren war es möglich den Titer im Vergleich zum Ausgangskonstrukt von 9,1x105 TU/ml auf 1,1x107 TU/ml nach Konzentration zu steigern. Generell ist eine sukzessive Optimierung von Transfervektoren aufgrund vieler notwendiger Klonierungsschritte und oft fehlender Restriktionsschnittstellen sehr aufwĂ€ndig und kompliziert. Durch die eingeschrĂ€nkten Restriktionsmöglichkeiten können ĂŒberflĂŒssige virale Sequenzen oft nicht einfach entfernt werden. Diese Probleme konnten in dieser Arbeit durch die Entwicklung einer Klonierungsstrategie, die die Herstellung von lentiviralen Transfervektoren stark vereinfacht, gelöst werden. Hierbei werden drei essentielle Segmente (5‘-LTR, RRE, ΔU3-3’ LTR) des Transfervektors, ausgehend von der viralen Wildtypsequenz, mittels PCR amplifiziert. Alle weiteren notwendigen Elemente, wie cPPT/CTS oder PPT, werden ĂŒber VerlĂ€ngerungen der verwendeten PCR-Primer integriert. Die Primer enthalten zudem komplementĂ€re Sequenzen, durch welche die drei Segmente anschließend durch die Methode der Fusions-PCR verknĂŒpft werden können. Das entstandene PCR-Fragment kann dann in ein bakterielles Plasmid integriert und eine Expressionskassette eingefĂŒgt werden. Mit dieser neuen Methode der Generation von Transfervektoren wurden von HIV-2- und SIVsmmPBj-abgeleitete Vektoren mit Titern bis zu 5,4x108 TU/ml bzw. 4,0x108 TU/ml generiert. FĂŒr alle optimierten Vektoren wurde die FĂ€higkeit, Monozyten in AbhĂ€ngigkeit vom vpx-Gen effizient zu transduzieren, erhalten. Somit sind neue HIV-2- und PBj-abgeleitete lentivirale Vektoren entwickelt worden, die einen hohen Grad an Sicherheit und Effizienz fĂŒr den Gentransfer in Monozyten aufweisen. Folglich konnte eine neue potentielle Anwendungsmöglichkeit fĂŒr diese Vektoren entwickelt werden. Diese beruht auf der Gen-Korrektur von gp91phox-defizienten Monozyten zur Behandlung der X-chromosomal gebundenen Form der Septischen Granulomatose. Eine Reinfusion von autologen, gp91phox-korrigierten Monozyten könnte einen antibakteriellen und antimykotischen Effekt im Patienten zeigen und wĂ€re so möglicherweise in der Lage akute Infektionsphasen einzuschrĂ€nken oder vorhandene Granulome aufzulösen. Dies könnte zusĂ€tzlich die statistische Überlebensrate der gegenwĂ€rtig bevorzugten Therapie der HĂ€matopoetischen Stammzelltransplantation verbessern. HierfĂŒr wurden zunĂ€chst verschiedene Methoden zur Analyse von murinen und humanen Monozyten etabliert und mit ihrer Hilfe die FĂ€higkeit der Phagozytose, des Oxidativen Burst sowie ein moderates Staphylococcus aureus „Killing“ in vitro bestĂ€tigt. ZusĂ€tzlich wurde die Biodistribution und die Halbwertszeit von Maus-Monozyten bestimmt. Daraufhin wurde das gp91phox-Gen in Monozyten von gp91phox-Knock-out-MĂ€usen ex vivo transferiert. HierfĂŒr mussten HIV-1-Vektoren eingesetzt werden, da sich die in dieser Arbeit konstruierten HIV-2- oder SIVsmmPBj-Vektoren als ineffizient zur Transduktion von Maus-Monozyten erwiesen haben. FĂŒr eine zukĂŒnftige Anwendung am Menschen kĂ€men umgekehrt nur die neuen Vektoren in Frage. Mit den HIV-1-Vektoren konnte das korrekte gp91phox-Gen in murine Monozyten eingebracht und die FĂ€higkeit zum „Oxidativen-Burst“ wiederhergestellt werden. Zusammenfassend lĂ€sst sich feststellen, dass in dieser Arbeit sichere und effiziente lentivirale Vektoren fĂŒr den Gentransfer in primĂ€re Monozyten generiert wurden. Die Analyse humaner und muriner Monozyten und Experimente zur Übertragung des gp91phox-Gens lassen erwarten, dass die Korrektur von gp91phox-defizienten Monozyten hilfreich fĂŒr die Therapie der Septischen Granulomatose sein könnte, und dass das gp91phox-Knock-out-Mausmodell zur Erprobung dieses Ansatzes geeignet ist

    Restriction of HIV-1 Replication in Monocytes Is Abolished by Vpx of SIVsmmPBj

    Get PDF
    Background: Human primary monocytes are refractory to infection with the human immunodeficiency virus 1 (HIV-1) or transduction with HIV-1-derived vectors. In contrast, efficient single round transduction of monocytes is mediated by vectors derived from simian immunodeficiency virus of sooty mangabeys (SIVsmmPBj), depending on the presence of the viral accessory protein Vpx. Methods and Findings: Here we analyzed whether Vpx of SIVsmmPBj is sufficient for transduction of primary monocytes by HIV-1-derived vectors. To enable incorporation of PBj Vpx into HIV-1 vector particles, a HA-Vpr/Vpx fusion protein was generated. Supplementation of HIV-1 vector particles with this fusion protein was not sufficient to facilitate transduction of human monocytes. However, monocyte transduction with HIV-1-derived vectors was significantly enhanced after delivery of Vpx proteins by virus-like particles (VLPs) derived from SIVsmmPBj. Moreover, pre-incubation with Vpx-containing VLPs restored replication capacity of infectious HIV-1 in human monocytes. In monocytes of non-human primates, single-round transduction with HIV-1 vectors was enabled. Conclusion: Vpx enhances transduction of primary human and even non-human monocytes with HIV-1-derived vectors, only if delivered in the background of SIVsmmPBj-derived virus-like particles. Thus, for accurate Vpx function the presence of SIVsmmPBj capsid proteins might be required. Vpx is essential to overcome a block of early infection steps in primary monocytes

    Multiple Restrictions of Human Immunodeficiency Virus Type 1 in Feline Cells▿

    No full text
    The productive replication of human immunodeficiency virus type 1 (HIV-1) occurs exclusively in defined cells of human or chimpanzee origin, explaining why heterologous animal models for HIV replication, pathogenesis, vaccination, and therapy are not available. This lack of an animal model for HIV-1 studies prompted us to examine the susceptibility of feline cells in order to evaluate the cat (Felis catus) as an animal model for studying HIV-1. Here, we report that feline cell lines harbor multiple restrictions with respect to HIV-1 replication. The feline CD4 receptor does not permit virus infection. Feline T-cell lines MYA-1 and FeT-1C showed postentry restrictions resulting in low HIV-1 luciferase reporter activity and low expression of viral Gag-Pol proteins when pseudotyped vectors were used. Feline fibroblastic CrFK and KE-R cells, expressing human CD4 and CCR5, were very permissive for viral entry and HIV-long terminal repeat-driven expression but failed to support spreading infection. KE-R cells displayed a profound block with respect to release of HIV-1 particles. In contrast, CrFK cells allowed very efficient particle production; however, the CrFK cell-derived HIV-1 particles had low specific infectivity. We subsequently identified feline apolipoprotein B-editing catalytic polypeptide 3 (feAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity. CrFK cells express at least three different APOBEC3s: APOBEC3C, APOBEC3H, and APOBEC3CH. While the feAPOBEC3C did not significantly inhibit HIV-1, the feAPOBEC3H and feAPOBEC3CH induced G to A hypermutations of the viral cDNA and reduced the infectivity ∌10- to ∌40-fold

    Determinants of FIV and HIV Vif sensitivity of feline APOBEC3 restriction factors

    No full text
    International audienceBackground: Feline immunodeficiency virus (FIV) is a global pathogen of Felidae species and a model system for Human immunodeficiency virus (HIV)-induced AIDS. In felids such as the domestic cat (Felis catus), APOBEC3 (A3) genes encode for single-domain A3Z2s, A3Z3 and double-domain A3Z2Z3 anti-viral cytidine deaminases. The feline A3Z2Z3 is expressed following read-through transcription and alternative splicing, introducing a previously untrans-lated exon in frame, encoding a domain insertion called linker. Only A3Z3 and A3Z2Z3 inhibit Vif-deficient FIV. Feline A3s also are restriction factors for HIV and Simian immunodeficiency viruses (SIV). Surprisingly, HIV-2/SIV Vifs can counteract feline A3Z2Z3.Results: To identify residues in feline A3s that Vifs need for interaction and degradation, chimeric human-feline A3s were tested. Here we describe the molecular direct interaction of feline A3s with Vif proteins from cat FIV and present the first structural A3 model locating these interaction regions. In the Z3 domain we have identified residues involved in binding of FIV Vif, and their mutation blocked Vif-induced A3Z3 degradation. We further identified additional essential residues for FIV Vif interaction in the A3Z2 domain, allowing the generation of FIV Vif resistant A3Z2Z3. Mutated feline A3s also showed resistance to the Vif of a lion-specific FIV, indicating an evolutionary conserved Vif-A3 binding. Comparative modelling of feline A3Z2Z3 suggests that the residues interacting with FIV Vif have, unlike Vif-interacting residues in human A3s, a unique location at the domain interface of Z2 and Z3 and that the linker forms a homeobox-like domain protruding of the Z2Z3 core. HIV-2/SIV Vifs efficiently degrade feline A3Z2Z3 by possible targeting the linker stretch connecting both Z-domains.Conclusions: Here we identified in feline A3s residues important for binding of FIV Vif and a unique protein domain insertion (linker). To understand Vif evolution, a structural model of the feline A3 was developed. Our results show that HIV Vif binds human A3s differently than FIV Vif feline A3s. The linker insertion is suggested to form a homeo-box domain, which is unique to A3s of cats and related species, and not found in human and mouse A3s. Together, these findings indicate a specific and different A3 evolution in cats and human
    corecore