289 research outputs found

    Accurate single-sequence prediction of solvent accessible surface area using local and global features

    Get PDF
    We present a new approach for predicting the Accessible Surface Area (ASA) using a General Neural Network (GENN). The novelty of the new approach lies in not using residue mutation profiles generated by multiple sequence alignments as descriptive inputs. Instead we use solely sequential window information and global features such as single-residue and two-residue compositions of the chain. The resulting predictor is both highly more efficient than sequence alignment-based predictors and of comparable accuracy to them. Introduction of the global inputs significantly helps achieve this comparable accuracy. The predictor, termed ASAquick, is tested on predicting the ASA of globular proteins and found to perform similarly well for so-called easy and hard cases indicating generalizability and possible usability for de-novo protein structure prediction. The source code and a Linux executables for GENN and ASAquick are available from Research and Information Systems at http://mamiris.com, from the SPARKS Lab at http://sparks-lab.org, and from the Battelle Center for Mathematical Medicine at http://mathmed.org

    Structural interpretation of protein-protein interaction network

    Get PDF
    Background Currently a huge amount of protein-protein interaction data is available from high throughput experimental methods. In a large network of protein-protein interactions, groups of proteins can be identified as functional clusters having related functions where a single protein can occur in multiple clusters. However experimental methods are error-prone and thus the interactions in a functional cluster may include false positives or there may be unreported interactions. Therefore correctly identifying a functional cluster of proteins requires the knowledge of whether any two proteins in a cluster interact, whether an interaction can exclude other interactions, or how strong the affinity between two interacting proteins is. Methods In the present work the yeast protein-protein interaction network is clustered using a spectral clustering method proposed by us in 2006 and the individual clusters are investigated for functional relationships among the member proteins. 3D structural models of the proteins in one cluster have been built – the protein structures are retrieved from the Protein Data Bank or predicted using a comparative modeling approach. A rigid body protein docking method (Cluspro) is used to predict the protein-protein interaction complexes. Binding sites of the docked complexes are characterized by their buried surface areas in the docked complexes, as a measure of the strength of an interaction. Results The clustering method yields functionally coherent clusters. Some of the interactions in a cluster exclude other interactions because of shared binding sites. New interactions among the interacting proteins are uncovered, and thus higher order protein complexes in the cluster are proposed. Also the relative stability of each of the protein complexes in the cluster is reported. Conclusions Although the methods used are computationally expensive and require human intervention and judgment, they can identify the interactions that could occur together or ones that are mutually exclusive. In addition indirect interactions through another intermediate protein can be identified. These theoretical predictions might be useful for crystallographers to select targets for the X-ray crystallographic determination of protein complexes

    Stereotypy i fakty. Kilka uwag o dziewiętnastowiecznym konserwatyzmie krakowskim

    Get PDF
    "W okresie powojennym dzieła polskich myślicieli konserwatywnych były traktowane przez rodzime wydawnictwa z dużą rezerwą. Przez długie lata czytelnicy musieli zadowalać się wznowieniami Dziejów Polski w zarysie Michała Bobrzyńskiego, w których pomijano zresztą tom trzeci, traktujący o porozbiorowej historii Polski aż do odzyskania niepodległości. W roku 1957 ukazały się także jego pamiętniki. Na początku lat 80-tych dużym wydarzeniem było opublikowanie antologii Stańczycy, w parę lat później wydano wybór publicystyki Adolfa Bocheńskiego pt. Historia i polityka. Te nieliczne wyjątki nie mogą jednak przesłonić faktu, że w Polsce Ludowej nie było miejsca dla idei konserwatywnych nie tylko w życiu politycznym lecz także na półkach księgarskich."(...

    MAVENs: Motion analysis and visualization of elastic networks and structural ensembles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to generate, visualize, and analyze motions of biomolecules has made a significant impact upon modern biology. Molecular Dynamics has gained substantial use, but remains computationally demanding and difficult to setup for many biologists. Elastic network models (ENMs) are an alternative and have been shown to generate the dominant equilibrium motions of biomolecules quickly and efficiently. These dominant motions have been shown to be functionally relevant and also to indicate the likely direction of conformational changes. Most structures have a small number of dominant motions. Comparing computed motions to the structure's conformational ensemble derived from a collection of static structures or frames from an MD trajectory is an important way to understand functional motions as well as evaluate the models. Modes of motion computed from ENMs can be visualized to gain functional and mechanistic understanding and to compute useful quantities such as average positional fluctuations, internal distance changes, collectiveness of motions, and directional correlations within the structure.</p> <p>Results</p> <p>Our new software, MAVEN, aims to bring ENMs and their analysis to a broader audience by integrating methods for their generation and analysis into a user friendly environment that automates many of the steps. Models can be constructed from raw PDB files or density maps, using all available atomic coordinates or by employing various coarse-graining procedures. Visualization can be performed either with our software or exported to molecular viewers. Mixed resolution models allow one to study atomic effects on the system while retaining much of the computational speed of the coarse-grained ENMs. Analysis options are available to further aid the user in understanding the computed motions and their importance for its function.</p> <p>Conclusion</p> <p>MAVEN has been developed to simplify ENM generation, allow for diverse models to be used, and facilitate useful analyses, all on the same platform. This represents an integrated approach that incorporates all four levels of the modeling process - generation, evaluation, analysis, visualization - and also brings to bear multiple ENM types. The intension is to provide a versatile modular suite of programs to a broader audience. MAVEN is available for download at <url>http://maven.sourceforge.net</url>.</p

    Shape-dependent designability studies of lattice proteins

    Get PDF
    One important problem in computational structural biology is protein designability, that is, why protein sequences are not random strings of amino acids but instead show regular patterns that encode protein structures. Many previous studies that have attempted to solve the problem have relied upon reduced models of proteins. In particular, the 2D square and the 3D cubic lattices together with reduced amino acid alphabet models have been examined extensively and have lead to interesting results that shed some light on evolutionary relationship among proteins. Here we perform designability studies on the 2D square lattice and explore the effects of variable overall shapes on protein designability using a binary hydrophobic-polar (HP) amino acid alphabet. Because we rely on a simple energy function that counts the total number of H-H interactions between non-sequential residues, we restrict our studies to protein shapes that have the same number of residues and also a constant number of non-bonded contacts. We have found that there is a marked difference in the designability between various protein shapes, with some of them accounting for a significantly larger share of the total foldable sequences

    Fold-specific sequence scoring improves protein sequence matching

    Get PDF
    Background Sequence matching is extremely important for applications throughout biology, particularly for discovering information such as functional and evolutionary relationships, and also for discriminating between unimportant and disease mutants. At present the functions of a large fraction of genes are unknown; improvements in sequence matching will improve gene annotations. Universal amino acid substitution matrices such as Blosum62 are used to measure sequence similarities and to identify distant homologues, regardless of the structure class. However, such single matrices do not take into account important structural information evident within the different topologies of proteins and treats substitutions within all protein folds identically. Others have suggested that the use of structural information can lead to significant improvements in sequence matching but this has not yet been very effective. Here we develop novel substitution matrices that include not only general sequence information but also have a topology specific component that is unique for each CATH topology. This novel feature of using a combination of sequence and structure information for each protein topology significantly improves the sequence matching scores for the sequence pairs tested. We have used a novel multi-structure alignment method for each homology level of CATH in order to extract topological information. Results We obtain statistically significant improved sequence matching scores for 73 % of the alpha helical test cases. On average, 61 % of the test cases showed improvements in homology detection when structure information was incorporated into the substitution matrices. On average z-scores for homology detection are improved by more than 54 % for all cases, and some individual cases have z-scores more than twice those obtained using generic matrices. Our topology specific similarity matrices also outperform other traditional similarity matrices and single matrix based structure methods. When default amino acid substitution matrix in the Psi-blast algorithm is replaced by our structure-based matrices, the structure matching is significantly improved over conventional Psi-blast. It also outperforms results obtained for the corresponding HMM profiles generated for each topology. Conclusions We show that by incorporating topology-specific structure information in addition to sequence information into specific amino acid substitution matrices, the sequence matching scores and homology detection are significantly improved. Our topology specific similarity matrices outperform other traditional similarity matrices, single matrix based structure methods, also show improvement over conventional Psi-blast and HMM profile based methods in sequence matching. The results support the discriminatory ability of the new amino acid similarity matrices to distinguish between distant homologs and structurally dissimilar pairs

    Orientational distributions of contact clusters in proteins closely resemble those of an icosahedron

    Get PDF
    The orientational geometry of residue packing in proteins was studied in the past by superimposing clusters of neighboring residues with several simple lattices.1,2 In this work, instead of a lattice we use the regular polyhedron, the icosahedron, as the model to describe the orientational distribution of contacts in clusters derived from a high-resolution protein dataset (522 protein structures with high resolution \u3c 1.5Å). We find that the order parameter (orientation function) measuring the angular overlap of directions in coordination clusters with directions of the icosahedron is 0.91, which is a significant improvement in comparison with the value 0.82 for the order parameter with the face-centered cubic (fcc) lattice. Close packing tendencies and patterns of residue packing in proteins is considered in detail and a theoretical description of these packing regularities is proposed

    Potentials 'R'Us web-server for protein energy estimations with coarse-grained knowledge-based potentials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge-based potentials have been widely used in the last 20 years for fold recognition, protein structure prediction from amino acid sequence, ligand binding, protein design, and many other purposes. However generally these are not readily accessible online.</p> <p>Results</p> <p>Our new knowledge-based potential server makes available many of these potentials for easy use to automatically compute the energies of protein structures or models supplied. Our web server for protein energy estimation uses four-body potentials, short-range potentials, and 23 different two-body potentials. Users can select potentials according to their needs and preferences. Files containing the coordinates of protein atoms in the PDB format can be uploaded as input. The results will be returned to the user's email address.</p> <p>Conclusions</p> <p>Our Potentials 'R'Us server is an easily accessible, freely available tool with a web interface that collects all existing and future protein coarse-grained potentials and computes energies of multiple structural models.</p
    corecore