4 research outputs found

    The MeerKAT international GHz tiered extragalactic exploration (MIGHTEE) survey

    Get PDF
    The MIGHTEE large survey project will survey four of the most well-studied extragalactic deep fields, totalling 20 square degrees to µJy sensitivity at Giga-Hertz frequencies, as well as an ultra-deep image of a single ∼1 deg2 MeerKAT pointing. The observations will provide radio continuum, spectral line and polarisation information. As such, MIGHTEE, along with the excellent multi-wavelength data already available in these deep fields, will allow a range of science to be achieved. Specifically, MIGHTEE is designed to significantly enhance our understanding of, (i) the evolution of AGN and star-formation activity over cosmic time, as a function of stellar mass and environment, free of dust obscuration; (ii) the evolution of neutral hydrogen in the Universe and how this neutral gas eventually turns into stars after moving through the molecular phase, and how efficiently this can fuel AGN activity; (iii) the properties of cosmic magnetic fields and how they evolve in clusters, filaments and galaxies. MIGHTEE will reach similar depth to the planned SKA all-sky survey, and thus will provide a pilot to the cosmology experiments that will be carried out by the SKA over a much larger survey volume

    An overview of the MHONGOOSE survey : observing nearby galaxies with MeerKAT

    No full text
    MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with H I masses from ∼ 106 to ∼ 1011 M, and luminosities from MR ∼ 12 to MR ∼ −22. The sample is selected to uniformly cover the available range in log(MHI). Our extremely deep observations, down to H I column density limits of well below 1018 cm− 2 — or a few hundred times fainter than the typical H I disks in galaxies — will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modeling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT’s capabilities

    Looking at the distant universe with the MeerKAT array: discovery of a luminous OH megamaser at z > 0.5

    Get PDF
    In the local universe, OH megamasers (OHMs) are detected almost exclusively in infrared-luminous galaxies, with a prevalence that increases with IR luminosity, suggesting that they trace gas-rich galaxy mergers. Given the proximity of the rest frequencies of OH and the hyperfine transition of neutral atomic hydrogen (H i), radio surveys to probe the cosmic evolution of H i in galaxies also offer exciting prospects for exploiting OHMs to probe the cosmic history of gas-rich mergers. Using observations for the Looking At the Distant Universe with the MeerKAT Array (LADUMA) deep H i survey, we report the first untargeted detection of an OHM at z > 0.5, LADUMA J033046.20-275518.1 (nicknamed "Nkalakatha"). The host system, WISEA J033046.26-275518.3, is an infrared-luminous radio galaxy whose optical redshift z ≈ 0.52 confirms the MeerKAT emission-line detection as OH at a redshift z OH = 0.5225 ± 0.0001 rather than H i at lower redshift. The detected spectral line has 18.4σ peak significance, a width of 459 ± 59 km s-1, and an integrated luminosity of (6.31 ± 0.18 [statistical] ± 0.31 [systematic]) × 103 L ⊙, placing it among the most luminous OHMs known. The galaxy's far-infrared luminosity L FIR = (1.576 ±0.013) × 1012 L ⊙ marks it as an ultraluminous infrared galaxy; its ratio of OH and infrared luminosities is similar to those for lower-redshift OHMs. A comparison between optical and OH redshifts offers a slight indication of an OH outflow. This detection represents the first step toward a systematic exploitation of OHMs as a tracer of galaxy growth at high redshifts

    Looking at the Distant Universe with the MeerKAT Array: Discovery of a luminous OH megamaser at z>0.5z > 0.5

    Get PDF
    In the local Universe, OH megamasers (OHMs) are detected almost exclusively in infrared-luminous galaxies, with a prevalence that increases with IR luminosity, suggesting that they trace gas-rich galaxy mergers. Given the proximity of the rest frequencies of OH and the hyperfine transition of neutral atomic hydrogen (HI), radio surveys to probe the cosmic evolution of HI in galaxies also offer exciting prospects for exploiting OHMs to probe the cosmic history of gas-rich mergers. Using observations for the Looking At the Distant Universe with the MeerKAT Array (LADUMA) deep HI survey, we report the first untargeted detection of an OHM at z>0.5z > 0.5, LADUMA J033046.20−-275518.1 (nicknamed "Nkalakatha"). The host system, WISEA J033046.26−-275518.3, is an infrared-luminous radio galaxy whose optical redshift z≈0.52z \approx 0.52 confirms the MeerKAT emission line detection as OH at a redshift zOH=0.5225±0.0001z_{\rm OH} = 0.5225 \pm 0.0001 rather than HI at lower redshift. The detected spectral line has 18.4σ\sigma peak significance, a width of 459±59 km s−1459 \pm 59\,{\rm km\,s^{-1}}, and an integrated luminosity of (6.31±0.18 [statistical] ±0.31 [systematic])×103 L⊙(6.31 \pm 0.18\,{\rm [statistical]}\,\pm 0.31\,{\rm [systematic]}) \times 10^3\,L_\odot, placing it among the most luminous OHMs known. The galaxy's far-infrared luminosity LFIR=(1.576±0.013)×1012 L⊙L_{\rm FIR} = (1.576 \pm 0.013) \times 10^{12}\,L_\odot marks it as an ultra-luminous infrared galaxy; its ratio of OH and infrared luminosities is similar to those for lower-redshift OHMs. A comparison between optical and OH redshifts offers a slight indication of an OH outflow. This detection represents the first step towards a systematic exploitation of OHMs as a tracer of galaxy growth at high redshifts
    corecore