1,271 research outputs found

    Direct Laser Sintering of Borosilicate Glass

    Get PDF
    Despite the advantages that selective laser sintering (SLS) offers in terms of material availability, many materials have yet to be explored for feasibility and even fewer are available on a commercial basis. This paper presents initial investigations for one such material, borosilicate glass, which could be of particular interest to filter manufacturers because it presents an attractive alternative to the conventional, time-consuming way of producing filters of various porosity classes. Process results are presented including a determination of the optimal parameter window and the effect of processing parameters on the density and surface quality. The effects of thermal post-processing and the inclusion of an additive are also discussed.Mechanical Engineerin

    Direct Laser Sintering of Ceramics

    Get PDF
    For more than one decade layer manufacturing technologies assist the development of new products. Due to a layer-wise build-up of a three-dimensional geometry, nearly every complex design is producible in a short period of time. Selective Laser Sintering is a powderbased technique to produce plastic prototypes (Rapid Prototyping) or metal mould inserts (Rapid Tooling). The laser sintering of ceramic powder is not yet commercialized but applications could be both Rapid Prototyping and Rapid Tooling. The former involves the laser sintering of investment casting shells and cores to cast metal prototypes and the latter the laser sintering of ceramic master patterns for metal spray forming of steel mould inserts. The advantage compared to actual processes are a faster availability of the final product. To facilitate these applications, special ceramic powders as well as new process parameter combinations were investigated. This paper will present achieved results within the abovedescribed applications.Mechanical Engineerin

    Синтез мультитопных лигандов -производных имидазола и триазола с использованием фениленового линкера

    Get PDF
    Aufgrund veränderter Marktbedingungen sind produzierende Unternehmen zunehmend gezwungen, sich mit immer komplexeren Produkten und steigender Variantenvielfalt in kürzeren Zeitabschnitten auf wettbewerbsintensiven Märkten zu behaupten. Als Konsequenz ist es erforderlich, die Produktentwicklung effektiver und effizienter zu gestalten. Demzufolge müssen auch die mit Werkstoff- und Verfahrensinnovationen verbundenen Rationalisierungspotentialen gezielt genutzt werden. Dies ist jedoch nur möglich, wenn werkstoff- und verfahrensspezifische Restriktionen bereits in einer frühen Produktentwicklungsphase Berücksichtigung finden. Um hierfür geeignete Voraussetzungen zu schaffen, wurden EDV-Hilfsmittel entwickelt. Die Prototypen Innotech, Ratech und Techbase unterstützen die integrierte Technologieplanung und ermöglichen bereits in frühen Phasen der Produktentwicklung eine optimale Abstimmung der Faktoren Gestalt, Werkstoff und Technologie

    Об одном алгоритме преобразования компонент связности

    Get PDF
    This work deals with the chemo-mechanical sub-aperture polishing of glass lenses using spiral tool path and pressure-inflated membrane tools. Current trends in manufacturing precision optics in Europe go to smaller lot sizes and an increasing ratio of custom specific lens design. This requires deterministic processes as well as methods for an analytical process set-up without empirical try-outs. Chemo-mechanical polishing is typically applied for pre-polishing step, which aims for smoothing the surface with moderate shape correction. But due to kinematic effects the spiral-polishing process often shows changes in the radius of curvature, which are right now corrected by empirical try-outs and iterative corrections. This paper suggests an analytical tool for the compensation of these effects and contributes doing so to an efficient pre-polishing of aspheres. A mathematical model calculates the local distribution of material removal. It is based on Preston's equation and takes into account the influence of the major input parameters, such as feed rate, spindle revolutions and spot size. The given results show a significant reduction in shape deviation applying this methods compared to a polishing process without any compensation

    Методика расчета КПД мехатронной системы генерирования электрической энергии постоянного тока

    Get PDF
    Предложена методика расчета активных потерь в элементах системы генерирования постоянного тока на базе магнитоэлектрического синхронного генератора и полупроводникового преобразователя. Особое внимание уделено анализу электрических потерь в синхронном генераторе: учитываются как искажения формы тока и напряжения синхронного генератора, так и изменение частоты вращения его вала, что позволяет повысить точность расчетов и качество проектирования отдельных элементов системы

    Size-resolved evaluation of simulated deep tropical convection

    Get PDF
    Deep moist convection is an inherently multiscale phenomenon with organization processes coupling convective elements to larger-scale structures. A realistic representation of the tropical dynamics demands a simulation framework that is capable of representing physical processes across a wide range of scales. Therefore, storm-resolving numerical simulations at 2.4 km have been performed covering the tropical Atlantic and neighboring parts for 2 months. The simulated cloud fields are combined with infrared geostationary satellite observations, and their realism is assessed with the help of object-based evaluation methods. It is shown that the simulations are able to develop a well-defined intertropical convergence zone. However, marine convective activity measured by the cold cloud coverage is considerably underestimated, especially for the winter season and the western Atlantic. The spatial coupling across the resolved scales leads to simulated cloud number size distributions that follow power laws similar to the observations, with slopes steeper in winter than summer and slopes steeper over ocean than over land. The simulated slopes are, however, too steep, indicating too many small and too few large tropical cloud cells. It is also discussed that the number of larger cells is less influenced by multiday variability of environmental conditions. Despite the identified deficits, the analyzed simulations highlight the great potential of this modeling framework for process-based studies of tropical deep convection. © 2018 American Meteorological Society

    Self-study guide to developing English linguistic competences for students of Computer Sciences

    Get PDF
    Методичні вказівки призначені для самостійної роботи студентів ІТ спеціальностей над опануванням фахової термінології та мають на меті допомогти студентам І та ІІ курсів самостійно працювати над розширенням словникового запасу, розвитком вмінь здобування інформації з англомовних текстових джерел

    Гибридный электроэнергетический модуль

    Get PDF
    Compression molding of glass optical components is a high volume near net-shape precision fabrication method. Residual stresses incurred during postmolding cooling are an important quality indicator for these components. In this research, residual stresses frozen inside molded glass lenses under different cooling conditions were investigated using both experimental approach and numerical simulation with a commercial finite element method program. In addition, optical birefringence method was also employed to verify the residual stress distribution in molded glass lenses. Specifically, optical retardations caused by the residual stresses in the glass lenses that were molded with different cooling rates were measured using a plane polariscope. The measured residual stress of the molded glass lenses were compared with numerical simulation as a validation of the modeling approach. Furthermore, a methodology for optimizing annealing process was proposed using the residual stress simulation results

    Analysis of Surface Integrity in Machining of AISI 304 Stainless Steel Under Various Cooling and Cutting Conditions

    Get PDF
    Recent studies have shown that machining under specific cooling and cutting conditions can be used to induce a nanocrystalline surface layer in the workspiece. This layer has beneficial properties, such as improved fatigue strength, wear resistance and tribological behavior. In machining, a promising approach for achieving grain refinement in the surface layer is the application of cryogenic cooling. The aim is to use the last step of the machining operation to induce the desired surface quality to save time-consuming and expensive post machining surface treatments. The material used in this study was AISI 304 stainless steel. This austenitic steel suffers from low yield strength that limits its technological applications. In this paper, liquid nitrogen (LN2) as cryogenic coolant, as well as minimum quantity lubrication (MQL), was applied and investigated. As a reference, conventional flood cooling was examined. Besides the cooling conditions, the feed rate was varied in four steps. A large rounded cutting edge radius and finishing cutting parameters were chosen to increase the mechanical load on the machined surface. The surface integrity was evaluated at both, the microstructural and the topographical levels. After turning experiments, a detailed analysis of the microstructure was carried out including the imaging of the surface layer and hardness measurements at varying depths within the machined layer. Along with microstructural investigations, different topological aspects, e.g., the surface roughness, were analyzed. It was shown that the resulting microstructure strongly depends on the cooling condition. This study also shows that it was possible to increase the micro hardness in the top surface layer significantly

    Experimental Study on Surface Integrity of Cryogenically Machined Ti-6Al-4V Alloy for Biomedical Devices

    Get PDF
    Titanium and its alloys are widely used in the biomedical sector. In this field, titanium and its alloys are the material of choice for biomedical devices such as hip and knee replacements. Usually, a Total Hip Replacement (THR) is based on four components, made out of different materials due to the material properties associated with the functional performance. One approach to lower the overall manufacturing costs and enhance the reliability of THR’s is to manufacture the prosthesis out of one material. The titanium alloy Ti-6Al-4V is, therefore, feasible as it exhibits better osseous integration compared to other metallic materials used as orthopedic devices. The sole use of Ti-6Al-4V alloy requires improvements of surface integrity (SI) and characteristics that are sensitive to SI. One possible way to improve the tribological properties of the THR and the biocompatibility of Ti-6Al-4V alloy is to deliberately decrease the material grain size in the surface layer from the micron scale (\u3e 1 µm) to the region of nano-sized grains (\u3c 100 nm). The objective of this paper is to study and prove the formation of nano-sized grains within the surface as well as the characterization of surface integrity when machining Ti-6Al-4V alloy. Therefore, different cryogenic cooling strategies are used where liquid nitrogen (LN2) is applied to the flank and rake face, and just to the flank face respectively. To compare the effect of cryogenic machining, conventional flood cooling was applied as third cooling strategy. As cutting tool, a roughing tool, having a large cutting edge radius, was used, since severe plastic deformation (SPD) has shown to be capable to produce nano-sized grains in the surface. The results showed, that cryogenic machining using a large cutting edge radius tool is able to decrease the materials grain size to the region of nano-sized grains
    corecore